Зарядное устройство для фонарика схема. Как сделать светодиодный фонарь своими руками? Как разобрать светодиодный аккумуляторный фонарь Lentel GL01


Нажать Класс

Рассказать ВК


Электрический фонарик относится как бы к дополнительному вспомогательному инструменту для проведения каких либо работ при наличии плохого освещения либо отсутствия освещения вообще. Каждый из нас выбирает тип фонарика по своему усмотрению:

  • налобный фонарик;
  • карманный фонарик;
  • фонарик на ручном генераторе

Схема простого фонарика

Электрическая схема простого фонарика \рис.1\ состоит из:

  • батареи элементов;
  • лампочки;
  • ключа \выключателя\.

Схема в своем исполнении простая и разъяснений на этот счет не требует. Причинами неисправности фонарика при такой схеме могут быть:

  • окисление контактных соединений с батарейками;
  • окисление контактов патрона лампочки;
  • окисление контактов самой лампочки;
  • неисправность ключа \выключателя света\;
  • неисправность самой лампочки \перегорела лампочка\;
  • отсутствие контактного соединения с проводом;
  • отсутствие питания батареек.

Другими причинами неисправности могут быть какие либо механические повреждения корпуса фонарика.

Схема аккумуляторного фонарика на светодиодах

фонарик налобный со светодиодами BL — 050 — 7C

Фонарик BL — 050 — 7C поступает в продажу со встроенным зарядным устройством, при подключении такого фонарика к внешнему источнику переменного напряжения — осуществляется подзарядка аккумуляторной батареи.

Аккумуляторные батарейки, а точнее электрохимические аккумуляторы,- принцип зарядки таких элементов основан на использовании обратимых электрохимических систем. Вещества, образовавшиеся в процессе разряда аккумулятора, под воздействием электрического тока — способны восстанавливать свое первоначальное состояние. То есть подзарядили фонарик и можем дальше им пользоваться. Такие электрохимические аккумуляторы или отдельные элементы, могут состоять из определенного количества, — в зависимости от потребляемого напряжения:

  • количества лампочек;
  • типа лампочек.

Количество, комплект таких отдельных элементов фонарика, — представляют из себя батарею.

Электрическую схему фонарика \рис.2\ можно рассматривать как состоящей из простой лампочки накаливания так и из определенного количества светодиодных лампочек. Для любой схемы фонарика что именно важно? — Важно то, чтобы потребляемая энергия лампочками состоящими в электрической цепи — соответствовала выдаваемому напряжению источника питания \батареи, состоящей из отдельных элементов\.

Читаем схему соединений:

Резистор R1 сопротивлением — 510 кОм и номинальным значением мощности — 0,25 Вт в электрической цепи соединен параллельно, за счет данного большого сопротивления, напряжение на дальнейшем участке электрической цепи значительно теряется, а точнее, часть электрической энергии преобразовывается в тепловую энергию.

С резистора R2 \сопротивлением 300 Ом и номинальным значением мощности — 1 Вт\ ток поступает на светодиод VD2. Данный светодиод служит индикаторной лампочкой, показывающей подключение зарядного устройства фонарика к внешнему источнику переменного напряжения.

На анод диода VD1 ток поступает от конденсатора C1. Конденсатор в электрической цепи является сглаживающим фильтром, часть электрической энергии теряется при положительном полупериоде синусоидального напряжения, так как при данном полупериоде конденсатор заряжается.

При отрицательном полупериоде конденсатор разряжается и ток поступает на анод катода VD1. Внешнее падение напряжения для данной электрической цепи происходит при наличии в электрической схеме — двух резисторов и лампочки. Так же, можно учесть, что при переходе тока от анода к катоду — в диоде VD1 — так же существует свой потенциальный барьер. То есть диоду тоже свойственно в какой то степени подвергаться нагреванию, при котором происходит внешнее падение напряжения.

На батарею GB1 состоящей из трех элементов, от зарядного устройства \при подключении фонарика к внешнему источнику переменного напряжения\ поступает ток двух потенциалов \+ -\. В батарее происходит восстановление электрохимического состава батареи — в свое первоначальное состояние.

Следующая схема \рис.3\ которая встречается в светодиодных фонариках, состоит из следующих элементов электроники:

  • двух резисторов \R1; R2\;
  • диодного моста состоящего из четырех диодов;
  • конденсатора;
  • диода;
  • светодиода;
  • ключа;
  • батареи;
  • лампочки.

Для данной схемы, внешнее падение напряжения происходит за счет всех состоящих элементов электроники — соединенных в этой цепи. Одна диагональ диодного моста мостовой схемы подключается к внешнему источнику переменного напряжения, другая диагональ диодного моста соединена с нагрузкой — состоящей из определенного количества светоизлучающих диодов.

Все подробные описания по замене элементов электроники при проведении ремонта фонарика, а так же проведение диагностики данных элементов — Вы сможете найти в этом сайте, где приведены подобные темы в которых усматривается ремонт бытовой техники.

Как отремонтировать светодиодный фонарик

По своей работе приходится иногда пользоваться налобным фонариком. Примерно через полгода после приобретения аккумуляторная батарея фонарика перестала заряжаться после его включения на подзарядку через сетевой шнур.

При установлении причины поломки налобного фонарика, ремонт сопровождался фотоснимками, чтобы изложить данную тему в наглядном примере.

Причина неисправности была в начале не ясна, так как при включении фонарика на подзарядку — сигнальная лампочка при этом загоралась и сам фонарик при нажатии кнопки выключателя — излучал слабый свет. Так в чем же может быть причина такой неисправности? В неисправности аккумуляторной батареи или в какой либо другой причине?

Необходимо было вскрыть корпус фонарика для его осмотра. На фотоснимках \фото №1\ наконечником отвертки указаны места скрепления \соединения\ корпуса.

Если корпус фонарика не поддается вскрытию, нужно внимательно осмотреть — все ли вывернуты шурупы.

На фотоснимке №2 показан понижающий преобразователь как по напряжению так и по силе тока.

В схеме не следует искать причину неисправности, так как при подключении к внешнему источнику — сигнальная лампочка светится \фото №2 красная светодиодная лампочка\. Проверяем дальше соединения.

Перед нами на фотоснимке \фото №3\ изображен выключатель света светодиодного фонарика. Контакты кнопочного поста выключателя представляют из себя устройство двойного выключателя света, где для данного примера загораются:

  • шесть светодиодных ламп,
  • двенадцать светодиодных ламп

фонарика. Два контакта выключателя как мы видим, замкнуты накоротко и к данным контактам припаян общий провод. К двум следующим контактам выключателя припаяны два провода — по отдельности, от которых поступает ток на освещение:

  • шести ламп;
  • двенадцати ламп.


Контакты выключателя света \при переключении\ достаточно проверить пробником как это показано на фотоснимке №4. К общему контакту \два короткозамкнутых контакта\ прикасаемся пальцем руки и к другим двум контактам поочередно соприкасаемся пробником.

При исправности выключателя, светодиодная лампочка пробника загорается \фото №4\. Выключатель света исправный, проводим дальше диагностику.

Сетевой шнур здесь также можно проверить пробником \фото №5\. Для этого, пальцем руки нужно замкнуть штырьки штепсельной вилки накоротко и поочередно к первому и ко второму контакту разъема кабеля подсоединить пробник. Загорание лампочки пробника будет указывать на отсутствие разрыва в проводе сетевого шнура.


Сетевой шнур для подзарядки аккумуляторной батареи исправен, проводим дальше диагностику. Необходимо также проверить аккумуляторную батарею фонарика.

На увеличенном изображении аккумуляторной батареи \фото №6\ видно, что для ее подзарядки поступает постоянное напряжение — 4 Вольт. Сила тока данного напряжения составляет — 0,9 ампер\час. Проверяем аккумуляторную батарею.

Прибор мультиметр в этом примере устанавливается в диапазон измерения постоянного напряжения от 2 до 20 Вольт, чтобы измеряемое напряжение соответствовало установленному диапазону.

Как мы видим, дисплей прибора показывает постоянное напряжение батареи — 4,3 Вольт. Фактически, данный показатель должен принимать большее значение, — то есть здесь недостаточное напряжение для питания светодиодных ламп. В светодиодных лампах учитывается потенциальный барьер для каждой такой лампы, — как нам известно из электротехники. Следовательно, батарея не получает необходимое напряжение при подзарядке.

А вот и вся причина неисправности \фото №8\. Данная причина неисправности была установлена не сразу, — в разрыве контактного соединения провода с аккумуляторной батареей.

Что здесь можно отметить:

Провода в данной схеме ненадежные для паяния, так как тонкое сечение провода не позволяет надежно крепиться в месте припаивания.

Но и такая причина поломки устранима, проводка была заменена на более надежное сечение и светодиодный фонарик в настоящее время действующий, работает безотказно.

Изложенную тему считаю незаконченной, будут приводиться в примерах для Вас, — ремонты других типов фонариков.

На этом пока все.


Твитнуть

Рассказать ВК

Нажать Класс




    Я бы назвал это «Записки хренового электрика»! Автор элементарно не понимает, как работает схема, её элементы, путает понятия. На примере работы схемы по рис. 2: R1 служит для разряда конденсатора C1 после отключения фонарика от сети в целях безопасности. Никакого «теряния» напряжения «на дальнейшем участке» нет, пусть Автор подключит вольтметр и посмотрит на него, чтобы убедиться в этом. Резистор R2 служит ограничителем тока. Светодиод VD2 служит не только индикатором, но и подаёт положительный потенциал на + аккумулятора.
    Конденсатор C1 в данной схеме является гасящим (а не сглаживающим фильтром), вот на нём то и гасится избыток переменного напряжения.
    Про потенциальный барьер тоже такого наворотил — читать смешно. А ток «ток двух потенциалов»?! Согласно классической физике, ток течёт от положительного потенциала к отрицательному, а электроны движутся наоборот.
    Автор в школе то учился?
    И такое у него — везде. Грустно. А ведь кто-то принимает его «откровения» за чистую монету.

    Здравствуйте, povaga! У меня перестал заряжаться фонарь «Облик 2077» на одном светодиоде. Схемы не могу найти, но примерно как на рисунке №3. Отличие: нет конденсатора С2, диода VD5, к выключателю SA1 припаяны два резистора и плата на три контакта. Замерил напряжение после моста — 2 вольта, аккумулятор на 4 вольта, как он может заряжаться? Помогите, пожалуйста, со схемой работы и электрической схемой. Заранее благодарен, с уважением, Долдин.

Как отремонтировать фонарь на светодиодах? Схема китайского фонарика с зарядкой от сети

Ремонт светодиодных фонарей - обзор поломок, устройство и схема

Для нормальной жизнедеятельности человека в темное время суток ему всегда необходим был свет. С развитием технологий источники освещения усовершенствовались, начиная свой путь от огня факелов и керосиновых ламп, заканчивая фонариками на аккумуляторах. Настоящей революцией в мире осветительной техники было создание светодиода, который тотчас же вошел в бытовую жизнь.

Современные светодиодные фонари очень экономные, свет распространяется очень далеко и он очень яркий. Огромная доля таких литиевых фонарей на современном рынке – китайского производства, они очень дешевые и доступные. Именно из-за дешевизны часто возникают поломки различного рода. В данной статье рассмотрим основные проблемы ремонта светодиодных фонарей и способы их устранения своими руками.

Как работает светодиодный фонарик?

Классическое устройство фонариков очень простое (независимо от типа корпуса, будь это модели Космос или ДиК АН-005). К батарейке подключается светодиод, цепь разрывается кнопкой выключения. В зависимости от количества светодиодов, количества самих световых элементов (например, основной фонарь на передней части и вспомогательный в ручке) в схему добавляются более сильная батарея (или несколько), трансформатор, сопротивление, а также устанавливается более функциональный выключатель (фонарики Фо-ДиК).

Почему ломаются фонарик?

Сейчас мы опустим проблемы, связанные с неправильной эксплуатацией китайского фонарика – «уронил его в тазик с водой, включил-выключил, а он почему-то не светит». Дешевизна фонарей достигается за счет упрощения электрических цепей внутри устройства. Это позволяет сэкономить на комплектующих (на их количестве и качестве). Это сделано для того, чтобы люди чаще покупали новые, а старые просто выбрасывали, даже не попробовав их починить своими руками.

Еще один пункт экономии – работающие на производстве люди, которые не обладают достаточной квалификацией для выполнения подобной работы. Как следствие – множество мелких и крупных ошибок в самой схеме, некачественная спайка и сборка комплектующих, что ведет к постоянному ремонту фонарей. В большинстве случаев все проблемы можно решить, правильно их диагностировав, этим мы и займемся далее.


Причина поломки фонаря

Скорее всего, при переключении выключателя светодиоды не хотят гореть по причине неисправности в электрической цепи. Самые распространенные из них:

  • окисление контактов аккумулятора или батарейки;
  • окисления на контактах, к которым батарейка подключается;
  • повреждение проводов, идущих как от аккумулятора к светодиоду, так и обратно;
  • неисправный элемент выключения;
  • отсутствие питания в цепи;
  • поломка в самих светодиодах.

Окисление. Чаще всего оно возникает в уже старых фонарях, которые часто используются в различных погодных условиях. Налет, который появляется на металле, мешает нормальному контакту, из-за чего фонарь на аккумуляторах может мигать или вообще не включаться. Если окисление наблюдается на батарейке или аккумуляторе, то нужно задуматься о замене.

Как починить контакты? Легкие загрязнения удаляются своими руками ваткой, смоченной в этиловом спирте. Когда загрязнения очень серьезные, даже ржавчина пошла по корпусу – использование такого элемента питания может быть опасно для здоровья и жизни. В магазинах сейчас можно найти достаточное количество новых батареек и аккумуляторов даже под старые типы фонарей.


Позаботьтесь об окружающей среде – не выбрасывайте старые аккумуляторы в мусорное ведро, наверняка у вас в городе есть пункты приема для утилизации.

Окисление также образуется и на контактах в самом фонаре. Здесь тоже нужно обращать внимание на их целостность. Если загрязнение все еще можно удалить ваткой со спиртом – остановитесь на этом варианте. Для труднодоступных мест можно воспользоваться ватной палочкой.

Если же контакты совсем проржавели или даже подгнили (что не редкость для старого фонаря), их придется менять. Спросите в магазине электроники, есть ли похожие контактные элементы (на протяжении как минимум десяти лет во всех фонарях они абсолютно идентичны за редкими исключениями). Если таких же нет – подберите как можно более похожий вариант. Вооружившись тонким паяльником, их без труда можно перепаять.


Повреждение контактов проводов. Помимо вышеописанных мест, контакты присутствуют в местах спайки проводов электрической цепи. Дешевое производство, спешка во время сборки и халатное отношение работников часто приводят к тому, что некоторые провода вообще забывают спаять, поэтому светодиодный фонарик не работает, даже если он только из коробки. Как отремонтировать фонарик в этом случае? Внимательно просмотрите всю цепь, аккуратно отодвигая провода медицинским пинцетом или другим тонким предметом. Если найдена несостоявшаяся спайка, ее нужно восстановить с помощью того же тонкого паяльника.

Это же можно проделать и с хлипкими соединениями, характерное состояние которых – надорванная оголенная жила, едва прикрепленная к месту спайки. Если у вас достаточно времени и ресурсов, и вы дорожите этим фонариком, можно методично и качественно перепаять вообще все контакты. Это значительно повысит эффективность такой цепи, защитит оголенные элементы от влаги и пыли (что актуально, если фонарик налобный), и при последующих случаях ремонта фонарика позволит исключить этот пункт. Ремонт маленьких налобных светодиодных фонарей выполняется абсолютно так же, размеры просто другие.

Повреждение проводов. После того, как вы убедились в чистоте контактов, можно приступить к просмотру всех проводов в цепи на предмет повреждений или замыканий. Распространенный случай, когда или во время сборки на заводе или после предыдущего ремонта проводки были повреждены неправильно установленной крышкой корпуса. Провод попал между двух деталей корпуса и был разрезан либо раздавлен во время затягивания болтов. Во время протекания тока электрическая схема могла перегреться или даже замкнуть, это неизбежно приведет к ремонту светодиодного фонарика.


Все разорванные участки необходимо спаять друг с другом для обеспечения лучшей проводимости, нежели при простом скручивании. Все оголенные места не забудьте заизолировать, лучше всего использовать тонкую термоусадку. Сильно поврежденные провода, которые уже могли взяться ржавчиной, желательно своими руками заменить полностью (подбирайте соответствующую жилу). После подобной доработки старые фонари могут светить гораздо ярче – выполненная модернизация улучшает протекание тока.

Неисправный выключатель. Также обратите внимание на контакты проводов с клеммами выключателя, устраните неполадки. Самый просто способ узнать, из-за выключателя ли не работает ваш фонарик – замкнуть цепь без него. Исключите его из схемы, напрямую выполнив подключение аккумулятор-светодиоды (можно попробовать и от сети с соответствующим аккумулятору напряжением). Если они загорятся – меняем выключатель. Возможно, он уже механически сломался от многоразового использования, фонарь просто так выключается, также возможен брак с производства. Если же светодиоды не хотят загораться напрямую от батарейки, следуем дальше.

Отсутствие тока в сети. Самая распространенная причина такой неисправности – разряженный или сильно старый литиевый аккумулятор. Светодиодный фонарь может светиться при зарядке, но если его отключить от розетки – сразу тухнет. Полная неисправность наблюдается тогда, когда фонарь совсем не заряжается и никак не реагирует на включение, хотя индикатор зарядки горит стабильно.


Поломка светодиодов. Когда все проблемы с проводами устранены (или же их не было), обратите внимание на сами светодиоды. Аккуратно достаньте плату, на которую они припаяны. С помощью мультиметра узнайте ток, который входит и выходит с платы. Если есть возможность, проверьте контакты и на всей плате. Скорее всего, светодиоды соединены последовательно, поэтому при поломке одного остальные тоже не будут светить. Проверять каждый, если их 3 и более – дело достаточно длительное по времени, поэтому лучше сразу купить новые светодиоды.


Плата со светодиодами

Заключение

Множество дешевых китайских фонариков на светодиодах, собранных в условиях жесткой экономии, чаще всего подвержены поломкам электрической цепи. Туда устанавливаются провода с очень маленьким сечением, которые довольно проблематично перепаять даже хорошим прибором. Однако практически все проблемы с проводами и батарейками с легкостью устраняются в домашних условиях, при правильном и аккуратном подходе даже недорогой фонарь отремонтированным прослужит вам более трех лет постоянного использования.

lampagid.ru

Как самостоятельно починить светодиодный китайский карманный фонарик. Инструкции по ремонту светодиодных фонарей своими руками с наглядными фото и видео


Сегодня мы поговорим о том, как самостоятельно починить светодиодный китайский карманный фонарик. Также рассмотрим инструкции по ремонту светодиодных фонарей своими руками с наглядными фото и видео

Как видно, схема простая. Основные элементы: токоограничивающий конденсатор, выпрямительный диодный мост на четырех диодах, аккумулятор, выключатель, сверхяркие светодиоды, светодиод индикации зарядки аккумулятора фонарика.


Ну а теперь по порядку о назначении всех элементов в фонарике.

Токоограничивающий конденсатор. Он предназначен для ограничения тока заряда аккумулятора. Его емкость для каждого типа фонарика может быть разной. Применяется неполярный слюдяной конденсатор. Рабочее напряжение должно быть не меньше 250 вольт. В схеме он должен обязательно шунтирован, как показано, резистором. Он служит для разряда конденсатора после того, как вы вытащите фонарик с зарядки из розетки. В противном случае вас может ударить током, если вы случайно прикоснетесь к сетевым выводам 220 вольт фонарика. Сопротивление этого резистора должно составлять не менее 500 кОм.

Выпрямительный мост собирается на кремниевых диодах с обратным напряжением не менее 300 вольт.

Для индикации зарядки аккумулятора фонарика применяется простой светодиод красного или зеленого свечения. Он подключен параллельно одному из диодов выпрямительного моста. Правда в схеме я забыл указать указать резистор, включенный последовательно с этим светодиодом.

Про остальные элементы говорить не имеет смысла, так все и так должно быть понятно.

Хочется обратить ваше внимание на основных моментах ремонта светодиодного фонарика. Рассмотрим основные неисправности и способы их устранения.

1. Фонарик перестал светить. Здесь вариантов не так уж и много. Причиной может служить выход из строя сверхярких светодиодов. Это может произойти к примеру в следующем случае. Вы поставили фонарик на зарядку и нечаянно включили выключатель. В этом случае произойдет резкий скачок тока и один или несколько диодов выпрямительного моста могут быть пробиты. А за ними может быть и конденсатор не выдержит и замкнет. Напряжение на аккумуляторе резко возрастет и светодиоды выйдут из строя. Так что ни в коем случае не включайте при зарядке фонарик, если не хотите его выбросить.


2. Фонарик не включается. Ну здесь нужно проверить выключатель.

3. Фонарик очень быстро разряжается. Если ваш фонарик со “стажем”, то скорее всего аккумулятор отработал свой срок службы. Если вы активно пользуетесь фонарем, то после одного года эксплуатации аккумулятор уже не держит.


Проблема 1. Не включается светодиодный фонарик или мерцает при работе

Как правило, это причина плохого контакта. Самый простой способ лечения - плотно закрутить все резьбы.Если фонарь не работает совсем, начните с проверки аккумулятора. Возможно он разряжен или вышел из строя.


Открутите задняя крышку фонаря и с помощью отвертки замкните корпус с минусовой контакт батареи. Если фонарик загорелся, значит проблема в модуле с кнопкой.

90% Кнопок всех светодиодных фонарей выполнены по одной схеме:Корпус кнопки из алюминия с резьбой, туда вставляется колпачок из резины, далее сам модуль кнопку и прижимное кольцо для контакта с корпусом.


Проблема чаще всего решается в слабо зажатом прижимном кольце. Для устранения этой неисправности достаточно найти круглогубцы с тонкими жалами или тонкие ножницы которые нужно вставить в отверстия, как на фото, и провернуть по часовой стрелке.

Если кольцо двигается, то проблема устранена. Если кольцо стоит на месте, значит проблема кроится в контакте модуля кнопки с корпусом. Выкрутите прижимное кольцо против часовой стрелки и вытащите модуль кнопки наружу.ЧАсто плохой контакт бывает из за окисления алюминиевой поверхности кольца или каемки на печатной плате Указаны стрелками)


Достаточно просто протереть эти поверхности спиртом и функционал будет восстановлен.

Модули кнопок бывают разные. Одни у которых контакт идет через печатную плату, другие, у которых контакт идет через боковые лепестки на корпус фонаря.Просто отогните такой лепесток вбок, чтобы контакт был плотнее. Как вариант, можно сделать напайку из олова, чтобы поверхность была толще, и прижимался контакт лучше.Все светодиодные фонари, в принципе устроены одинаково

Плюс идет через плюсовой контакт батареи в центр светодиодного модуля.Минус идет через корпус и замыкается кнопкой.

Не лишним будет проверить плотность прилегания модуля светодиода внутри корпуса. Это так же частая проблема светодиодных фонарей.


Круглогубцами или щипцапи прокрутите модуль по часовой стрелке до упора. Будьте аккуратны, в этот момент легко повредить светодиод.

Этих действий должно быть вполне достаточно, чтобы восстановить функционал фонаря светодиодного.

Хуже, когда фонарь работает и режимы переключаются, но пучок очень тусклы, или фонарь вообще не работает и внутри запах гари.


Проблема 2. Фонарь работает нормально, но тускло, или не работает совсем и внутри запах гари

Скорее всего вышел из строя драйвер.Драйвер - это электронная схема на транзисторах, которая управляет режимами фонаря а так же отвечает за постоянный уровень напряжения вне зависимости от разрядки аккумулятора.

Вам нужно выпаять сгоревший драйвер и впаять новый драйвер, либо соединить светодиод напрямую с аккумулятором. В этом случае вы теряете все режимы и остаетесь только с максимальным.

Иногда (гораздо реже) выходит из строя светодиод.Проверить это можно очень просто. поднести к контактным площадкам светодиода напряжение 4.2 V/. Главное не перепутать полярность. Если светодиод горит ярко, то вышел из строя драйвер, если наоборот, то нужно заказывать новый светодиод.

Выкрутите модуль со светодиодом из корпуса.Модули бывают разные, но как правило, они сделаны из меди или латуни и

Самое слабое место у подобных фонарей - кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться.Первый признак - фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается.


Самый простой способ заставить такой фонарь светить - поступить следующим образом:

1. Берём тонкий многожильный провод, отрезаем одну жилку.2. Накручиваем проводок на пружину.3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступатьнад закручивающейся частью фонарика.4. Плотно закручиваем. Излишек провода обламываем (отрываем).В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарикзасияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтомувключение - выключение фонарика производится поворотом головной части.Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонарятрогать не следует. Отворачиваем голову.


Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, которыйпросто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:

1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.2. Теперь можно пинцетом выкрутить корпус с кнопкой.3. Извлекаем кнопку.4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.


1. Зачищаем мелкой шкуркой.2. Облуживаем тонким слоем места отмеченные красным цветом. Протираем спиртом от флюса,собираем кнопку.3. Для увеличения надёжности, я припаял пружину к нижнему контакту кнопки.4. Собираем всё обратно.После ремонта, кнопка работает отлично. Конечно, олово тоже окисляется, но поскольку олово - довольно мягкий металл, я надеюсь, что окисная плёнка при работе кнопки будетлегко разрушаться. Недаром же на лампочках центральный контакт делают из олова.


УЛУЧШАЕМ ФОКУСИРОВКУ.

Что такое «хотспот», мой китаец представлял весьма смутно, поэтому я решил его просветить.Откручиваем головную часть.

1. В плате есть небольшое отверстие (стрелка). С помощью шила выкручиваем начинку,при этом слегка давим пальцем на стекло снаружи. Так выкручивается легче.2. Снимаем отражатель.3. Берём обыкновенную офисную бумагу, пробиваем офисным дыроколом 6-8 отверстий.Диаметр отверстий дырокола замечательно совпадает с диаметром светодиода.Вырезаем 6-8 бумажных шайбочек.4. Кладём шайбы на светодиод и прижимаем отражателем.Тут придётся поэкспериментировать с количеством шайб. Я таким способом улучшал фокусировку у пары фонариков, количество шайб было в диапазоне 4-6. На текущем пациенте их потребовалось 6.


Китайцы экономят на всём. Пара лишних деталек - увеличение себестоимости, поэтому не ставят.

Основная часть схемы (отмеченная зелёным) может быть различной. На одном-двух транзисторах или на специализированной микросхемке (у меня схема из двух деталей:дроссель и микросхема с 3-мя ногами, похожая на транзистор). А вот на части отмеченной красным - экономят. Я добавил конденсатор и пару диодов 1n4148 параллельно (шотки у меня не нашлось). Яркость светодиода увеличилась процентов на 10-15.


remontavto-moto-velo.blogspot.com

Доработка светодиодного фонаря - RadioRadar

Светотехника

Главная Радиолюбителю Светотехника

В тёмное время суток карманный фонарь - незаменимая вещь. Однако имеющиеся в продаже образцы на аккумуляторной батарее с зарядкой от сети вызывают лишь разочарование. Некоторое время после покупки они ещё работают, но затем гелевая свин-цово-кислотная аккумуляторная батарея деградирует и одной её зарядки начинает хватать всего лишь на несколько десятков минут свечения. А нередко во время зарядки при включённом фонаре светодиоды перегорают один за другим. Конечно, учитывая невысокую цену фонаря, можно каждый раз покупать новый, но целесообразнее один раз разобраться в причинах отказов, устранить их в имеющемся фонаре и забыть о проблеме на долгие годы.

Рассмотрим подробно показанную на рис. 1 схему одного из вышедших из строя фонарей и определим её основные недостатки. Слева от аккумуляторной батареи GB1 здесь расположен отвечающий за её зарядку узел. Ток зарядки задан ёмкостью конденсатора С1. Резистор R1, установленный параллельно конденсатору, разряжает его после отключения фонаря от сети. Светодиод HL1 красного цвета свечения подключён через ограничительный резистор R2 параллельно нижнему левому диоду выпрямительного моста VD1-VD4 в обратной полярности. Ток через светодиод протекает в те полупериоды сетевого напряжения, в которых открыт верхний левый диод моста. Таким образом, свечение светодиода HL1 свидетельствует лишь о подключении фонаря к сети, а не об идущей зарядке. Он будет светиться даже при отсутствующей или неисправной аккумуляторной батарее.

Потребляемый фонарём от сети ток ограничен ёмкостным сопротивлением конденсатора С1 приблизительно до 60 мА. Поскольку часть его ответвляется в светодиод HL1, ток зарядки батарей GB1 получается около 50 мА. Гнёзда XS1 и XS2 предназначены для измерения напряжения батареи.

Резистор R3 ограничивает ток разрядки батареи через соединённые параллельно светодиоды EL1-EL5, но его сопротивление слишком мало, и через светодиоды течёт ток, превышающий номинальный. Яркость от этого увеличивается незначительно, а скорость деградации кристаллов све-тодиодов заметно возрастает.

Теперь о причинах перегорания све-тодиодов. Как известно, при зарядке старого свинцового аккумулятора, пластины которого сульфатировались, возникает дополнительное падение напряжения на его повышенном внутреннем сопротивлении. В результате при идущей зарядке напряжение на выводах такого аккумулятора или их батареи может в 1,5...2 раза превысить номинальное. Если в этот момент, не прекращая зарядки, замкнуть выключатель SA1, чтобы проверить яркость свечения светодиодов, то повышенное напряжение окажется достаточным для значительного превышения текущим через них током допустимого значения. Светодиоды поочерёдно выйдут из строя. В результате к непригодной к дальнейшей эксплуатации аккумуляторной батарее добавляются сгоревшие светодиоды. Отремонтировать такой фонарь невозможно - запасные батареи в продаже отсутствуют.

Предлагаемая схема доработки фонаря, показанная на рис. 2, позволяет устранить описанные недостатки и исключить вероятность выхода из строя его элементов при любых ошибочных действиях. Она заключается в таком изменении схемы подключения светодиодов к аккумуляторной батарее, чтобы её зарядка прерывалась автоматически. Это обеспечивается заменой выключателя SA1 на переключатель. Ограничительный резистор R5 подобран таким, что общий ток через светодиоды EL1-EL5 при напряжении батареи GB1 4,2 В равен 100 мА. Поскольку переключатель SA1 использован трёх-позиционный, появилась возможность реализовать экономичный режим пониженной яркости фонаря, добавив в него резистор R4.

Индикатор на светодиоде HL1 также переделан. Последовательно с аккумулятором включён резистор R2. Падающее на нём при протекании тока зарядки напряжение приложено к свето-диоду HL1 и ограничительному резистору R3. Теперь происходит индикация именно текущего через батарею GB1 тока зарядки, а не просто наличия сетевого напряжения.

Негодная гелевая батарея заменена составленной из трёх Ni-Cd аккумуляторов ёмкостью 600 мА-ч. Продолжительность её полной зарядки - около 16 ч, причём испортить батарею, не прекратив зарядку вовремя, невозможно, поскольку зарядный ток не превышает безопасного значения, численно равного 0,1 номинальной ёмкости аккумулятора.

Вместо сгоревших установлены светодиоды HL-508h338WC диаметром 5 мм белого свечения номинальной яркостью 8 кд при токе 20 мА (максимальный ток - 100 мА) и угле излучения 15°. На рис. 3 показана экспериментальная зависимость падения напряжения на таком светодиоде от текущего через него тока. Его значение 5 мА соответствует практически полностью разряженной батарее GB1. Тем не менее яркость фонаря и в этом случае оставалась достаточной.

Переделанный по рассмотренной схеме фонарь успешно работает уже несколько лет. Заметное снижение яркости свечения происходит лишь при почти полной разрядке аккумуляторной батареи. Это как раз и служит сигналом о необходимости зарядить её. Как известно, полная разрядка Ni-Cd аккумуляторов перед зарядкой повышает их долговечность.

Из недостатков рассмотренного способа доработки можно отметить довольно большую стоимость батареи из трёх Ni-Cd аккумуляторов и сложность её размещения в корпусе фонаря вместо штатной свинцово-кислотной. Автору пришлось разрезать внешнюю плёночную оболочку новой батареи, чтобы более компактно разместить образующие её аккумуляторы.

Поэтому при доработке ещё одного фонаря с четырьмя светодиодами было решено использовать только один Ni-Cd аккумулятор и драйвер светодиодов на микросхеме ZXLD381 в корпусе SOT23-3 http://www.diodes.com/datasheets/ ZXLD381.pdf. Она при входном напряжении 0,9...2,2 В обеспечивает светодиоды током до 70 мА.

На рис. 4 показана схема питания светодиодов HL1-HL4 с применением этой микросхемы. График типовой зависимости их суммарного тока от индуктивности дросселя L1 приведён на рис. 5. При его индуктивности 2,2 мкГн (использован дроссель DLJ4018-2.2) на каждый из четырёх параллельно соединённых светодиодов EL1-EL4 приходится по 69/4=17,25 мАтока, что вполне достаточно для их яркого свечения.

Из других навесных элементов для работы микросхемы в режиме сглаженного выходного тока требуются лишь диод Шоттки VD1 и конденсатор С1. Интересно, что на типовой схеме применения микросхемы ZXLD381 указана ёмкость этого конденсатора 1 Ф. Узел зарядки аккумулятора G1 такой же, как на рис. 2. Имеющиеся там же ограничительные резисторы R4 и R5 теперь не нужны, а переключателю SA1 достаточно двух положений.

Ввиду малого числа деталей доработка фонаря была выполнена навесным монтажом. Аккумулятор G1 (Ni-Cd типоразмера АА ёмкостью 600 мА-ч) установлен в соответствующий держатель. По сравнению с фонарём, доработанным по схеме рис. 2, яркость получилась субъективно несколько меньшей, но вполне достаточной.

Дата публикации: 31.05.2013

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net


На днях заходит к нам соседка и приносит с собой симпатичный переносной фонарь.
Фонарь проработал полгода, полгода пролежал без дела, сейчас понадобился, а не работает. Фонарем пользовались в подвале; лампочка только над дверью, а у дальних полок с вареньем - соленьем сумрачно. Фонарь в подвале и обитал, висел на косяке под выключателем и розеткой. Подвал сухой, супруг хотел переноску с лампочкой сделать, а фонарь появился - надобности в ней не стало. Пока женщины судачили между собой, я занялся фонарем. Фонарь изготовили китайцы, имеется гелиевый кислотный аккумулятор,
галогеновая лампа накаливания, зарядное устройство для подзарядки аккумулятора,
собранное по примитивной схеме.

Произвел необходимые замеры аккумулятора мультиметром:


Напряжение и ток на нуле, сопротивление - бесконечность. Возиться с таким аккумулятором нет смысла, имел с такими возможность попыток реанимировать, но если умерла, так умерла. Решено было делать простой фонарь со светодиодом, питание от сети 220 вольт.
Соседка принесла сетевой шнур около пяти метров с вилочкой на одном конце.
Нашлась светодиодная лампочка на 12 вольт,
работоспособная плата от необходимого зарядного устройства так же имелась,
установил только вместо индикаторного светодиода стабилитрон Д815Д, да сетевой шнур к плате паяльном припаял.
Воткнул вилку в сеть и ласковый свет фонаря осветил комнату.
Делов - то всего на рубль с полтиной, а трехлитровую банку овощного маринованного ассорти в качестве презента от соседки получил.

usamodelkina.ru

Светодиодный фонарь от 1,5 В и ниже

Блокинг – генератор представляет собой генератор кратковременных импульсов повторяющихся через довольно большие промежутки времени.

Одним из достоинств блокинг - генераторов являются сравнительная простота, возможность подключения нагрузки через трансформатор, высокий КПД, подключения достаточно мощной нагрузки.

Блокинг-генераторы очень часто используются в радиолюбительских схемах. Но мы будем запускать от этого генератора светодиод.

Очень часто в походе, на рыбалке или охоте нужен фонарик. Но не всегда под рукой есть аккумулятор или батарейки 3В. Данная схема может запустить светодиод на полную мощность от почти разряженной батарейки.

Немного о схеме. Детали: транзистор можно использовать любой (n-p-n или p-n-p) в моей схеме КТ315Г.

Резистор нужно подбирать, но об этом потом.

Кольцо ферритовое не очень большое.

И диод высокочастотный с низким падением напряжения.

Итак, убирался я в ящике в столе и нашел старый фонарик с лампочкой накаливания, конечно же, сгоревшей, а недавно видел схему этого генератора.

И решил я спаять схему и засунуть в фонарик.

Ну-с приступим:

Для начала соберем по этой схеме.

Берем ферритовое кольцо (я вытащил из балласта люминесцентной лампы) И мотаем 10 витков проводом 0,5-0,3мм (можно и тоньше, но не удобно будет). Намотали, делаем петельку, ну или отвод, и мотаем еще 10 витков.

Теперь берем транзистор КТ315, светодиод и наш трансформатор. Собираем по схеме (см. выше). Я поставил еще конденсатор параллельно с диодом, так ярче светилось.

Вот и собрали. Если светодиод не горит, поменяете полярность батарейки. Все равно не горит, проверьте правильность подключения светодиода и транзистора. Если все правильно и все равно не горит, значит не правильно намотан трансформатор. Если честно у меня тоже схема завелась далеко не с первого раза.

Теперь дополняем схему остальными деталями.

Поставив диод VD1 и конденсатор С1 светодиод засветится ярче.

Последний этап - подборка резистора. Вместо постоянного резистора ставим переменный на 1,5кОма. И начинаем крутить. Нужно найти то место где светодиод светит ярче, при этом надо найти место где если увеличить сопротивление хоть чуть-чуть светодиод гаснет. В моем случае это 471Ом.

Ну ладно, теперь ближе к делу))

Разбираем фонарик

Вырезаем из одностороннего тонкого стеклотекстолита кружок под размер трубки фонарика.

Теперь идем и ищем детали нужных номиналов размером несколько миллиметров. Транзистор КТ315

Теперь размечаем плату и разрезаем фольгу канцелярским ножом.

Лудим плату

Исправляем косяки, если таковы имеются.

Теперь чтобы паять плату нам нужно специальное жало, если нет - не беда. Берем проволоку 1-1,5мм толщиной. Тщательно зачищаем.

Теперь наматываем на имеющийся паяльник. Конец проволоки можно заострить и залудить.

Ну-с приступим припаивать детали.

Можно воспользоваться лупой.

Ну, вроде все припаяли, кроме конденсатора, светодиода и трансформатора.

Теперь тест-запуск. Все эти детали (не припаивая) прицепляем на «сопли»

Ура!! Получилось. Теперь можно не опасаясь все детали припаивать нормально

Мне вдруг стало интересно, какое же напряжение на выходе, я измерил

3,7В нормально для светодиода большой мощности.

Самое главное припаять светодиод))

Вставляем в наш фонарик, когда я вставлял, я отпаял светодиод - он мешался.

И так, вставили, убедились, что все пролазит свободно. Теперь вытаскиваем плату и покрываем края лаком. Чтобы замыкания не было, ведь корпус у фонарика это минус.

Теперь припаиваем обратно светодиод и проверяем еще раз.

Проверили, все работает!!!

Теперь все это аккуратно вставляем в фонарик и включаем.

Такой фонарик можно запустить даже от разряженной батарейка, а если вообще нет батареек (например, в лесу на охоте). Есть много разных способов получить маленькое напряжение (в картошку вставить 2 проволочки из разных металлов) и запустить светодиод.

Желаю удачи!!!

sdelaysam-svoimirukami.ru

АККУМУЛЯТОРНЫЙ СВЕТОДИОДНЫЙ

Дело было вечером - делать было нечего. И затеял я уборку своих залежей радиодеталей и прочих электронных штучек накопившихся в районе стола. Кое-что в сарай, а кое что - в диван. И попался мне в процессе наведения порядков простой сгоревший светодиодный фонарик с аккумулятором, заряжающимся от встроенного бестрансформаторного выпрямителя.

Так как сами светодиоды оказались живы, да и корпус вроде ничего - решил довести его до рабочего состояния. Конечно не по оригинальной китайской схеме, а на более совершенной. По задумке обновлённый аккумуляторный светодиодный фонарь будет заряжаться от сети и светить до 20-ти часов от литий - ионника (при токе 50мА).

Не бойтесь - паять дорогие детали не нужно:) Для этих целей отлично подойдёт готовое зарядное устройство от любого мобильного телефона (потерялся месяц назад) и тоже любой мобильниковский литий - ионный аккумулятор (отдали на запчасти утопленный в море телефон).

Что требуется сделать? Просто соединить зарядку с аккумулятором, а его в свою очередь со светодиодами.

Так как в фонарике было небольшое квадратное отверстие для дополнительного светодиода - закрыл его куском тёмного оргстекла, разместив под ним красный светодиод индикации включения в сеть на подзарядку. Светодиод включается параллельно выходам ЗУ.

Родная вилка фонаря потерялась, поэтому пришлось делать новую, предварительно отпилив её от вышеуказанного зарядного устройства, из которого была извлечена платка.

Как видите, в корпусе оказалось вполне достаточно места и для зарядного устройства, и для прочих компонентов светодиодного фонаря.

При монтаже учтите, что если аккумулятор напрямую припаять к зарядке, то в отключенном от сети состоянии будет небольшой саморазряд на несколько миллиампер. Выход простой - по плюсу поставить диод типа IN4001 или аналогичный на ток более 0,5А.

Теперь при включении фонарика тумблером, плюс аккумулятора поступает через резистор 20 Ом на светодиоды. А снова нажав на тумблер и перекинув плюс на аккумулятор - переводим фонарь в режим заряда от сети.

Несмотря на то, что в самом аккумуляторе установлен контроллер заряда - не рекомендую оставлять фонарик воткнутым в розетку дольше чем на 5 часов. Мало ли что...

Готовый светодиодный аккумуляторный фонарь получился очень симпатичным и удобным в эксплуатации. Светит вполне достаточно для большинства целей. Кому нужна сверх моща - смотрите на мощные светодиоды.

Здесь, на примере этой простой конструкции, я показал сам принцип переделки фонарей с использованием остатков от нерабочих мобильников, которых уверен, у вас накопилось немалое количество.

Форум по светодиодным фонарям

Обсудить статью АККУМУЛЯТОРНЫЙ СВЕТОДИОДНЫЙ

radioskot.ru

Восстанавливаем и доводим до ума китайский фонарик. / Мастерская / НеПропаду

У многих имеются различные китайские фонарики, работающие от одной батарейки. Типа такого: К сожалению, они весьма недолговечны. О том, как вернуть фонарик к жизни и о некоторых простых доработках, способных улучшить подобные фонари - я расскажу далее. Самое слабое место у подобных фонарей - кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться. Первый признак - фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается. Самый простой способ заставить такой фонарь светить - поступить следующим образом: 1. Берём тонкий многожильный провод, отрезаем одну жилку. 2. Накручиваем проводок на пружину. 3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступать над закручивающейся частью фонарика. 4. Плотно закручиваем. Излишек провода обламываем (отрываем). В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарик засияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтому включение - выключение фонарика производится поворотом головной части. Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонаря трогать не следует. Отворачиваем голову.

ВОССТАНАВЛИВАЕМ РАБОТОСПОСОБНОСТЬ КНОПКИ.

Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, которыйпросто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.2. Теперь можно пинцетом выкрутить корпус с кнопкой.3. Извлекаем кнопку.4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.1. Зачищаем мелкой шкуркой.2. Облуживаем тонким слоем места отмеченные красным цветом. Протираем спиртом от флюса,собираем кнопку.3. Для увеличения надёжности, я припаял пружину к нижнему контакту кнопки.4. Собираем всё обратно.После ремонта, кнопка работает отлично. Конечно, олово тоже окисляется, но поскольку олово - довольно мягкий металл, я надеюсь, что окисная плёнка при работе кнопки будетлегко разрушаться. Недаром же на лампочках центральный контакт делают из олова.

УЛУЧШАЕМ ФОКУСИРОВКУ.

Что такое «хотспот», мой китаец представлял весьма смутно, поэтому я решил его просветить.Откручиваем головную часть.1. В плате есть небольшое отверстие (стрелка). С помощью шила выкручиваем начинку,при этом слегка давим пальцем на стекло снаружи. Так выкручивается легче.2. Снимаем отражатель.3. Берём обыкновенную офисную бумагу, пробиваем офисным дыроколом 6-8 отверстий.Диаметр отверстий дырокола замечательно совпадает с диаметром светодиода.Вырезаем 6-8 бумажных шайбочек.4. Кладём шайбы на светодиод и прижимаем отражателем.Тут придётся поэкспериментировать с количеством шайб. Я таким способом улучшал фокусировку у пары фонариков, количество шайб было в диапазоне 4-6. На текущем пациенте их потребовалось 6.Что получилось в итоге:Слева - наш китаец, справа - Fenix LD 10 (на минимуме).Результат вполне приятный. Хотспот стал ярко выраженным и равномерным.

УВЕЛИЧИВАЕМ ЯРКОСТЬ (для тех, кто немного разбирается в электронике).

Китайцы экономят на всём. Пара лишних деталек - увеличение себестоимости, поэтому не ставят.Основная часть схемы (отмеченная зелёным) может быть различной. На одном-двух транзисторах или на специализированной микросхемке (у меня схема из двух деталей:дроссель и микросхема с 3-мя ногами, похожая на транзистор). А вот на части отмеченной красным - экономят. Я добавил конденсатор и пару диодов 1n4148 параллельно (шотки у меня не нашлось). Яркость светодиода увеличилась процентов на 10-15.

1. Так выглядит светодиод в подобных китайцах. Сбоку видно, что внутри толстая и тонкая ножки. Тонкая ножка - это плюс. Ориентироваться нужно по этому признаку, потому что цвета проводов могут быть совершенно непредсказуемыми.2. Так выглядит плата, к которой припаян светодиод (с обратной стороны). Зелёным цветом обозначена фольга. Провода, идущие от драйвера, припаивают к ножкам светодиода.3. Острым ножом или треугольным надфилем разрезаем фольгу на плюсовой стороне светодиода.Всю плату зашкуриваем, для снятия лака.4. Припаиваем диоды и конденсатор. Диоды я взял из сломанного компьютерного блока питания, танталовый конденсатор выпаял из какого-то сгоревшего винчестера.Плюсовой провод теперь нужно припаивать к площадке с диодами.

В результате, фонарик выдаёт (на глаз) 10-12 люмен (см. фото с хотспотами),если судить по фениксу, который в минимальном режиме выдаёт 9 люмен.

И последнее: преимущество китайца над фирменным фонариком (да-да, не смейтесь) Фирменные фонари рассчитаны на то, что в них могут использоваться аккумуляторы, поэтомус батарейкой разряженной до 1 вольта, мой Fenix LD 10, попросту не включается. Совсем.Я взял севшую щелочную батарейку, которая отработала свой срок в компьютерной мышке. Мультиметр показал, что она села до 1.12в. Мышка на ней уже не работала, Fenix, как я и сказал, не запустился. А вот китаец - работает! Слева - китаец, справа - Fenix LD 10 на минимуме (9 люмен). К сожалению, баланс белого сбит.У феникса температура 4200К. Китаец синит, но не так фигово, как на фото.Ради интереса я попробовал добить батарейку. На этом уровне яркости (на глаз 5-6 люмен) фонарь проработал около 3-х часов. Яркости вполне достаточно, чтобы подсветить себе под ноги в тёмном подъезде\лесу\подвале. Потом еще часа 2 яркость снижалась до уровня «светлячка». Согласитесь, 3-4 часа с приемлемым светом, могут многое решить.За сим позвольте откланяться.Stari4ok.

Hh004F схема включения

  • Схема подключения датчика света для освещения

  • В настоящее время весьма частыми стали отключения электроэнергии, поэтому в радиолюбительской литературе достаточно много внимания уделяется локальным источникам питания. Не очень энергоемким, но весьма полезным при аварийных отключениях является компактный аккумуляторный фонарик (АКФ), в аккумуляторной батарее (АКБ) которого применены три герметичных дисковых никель-кадмиевых аккумулятора Д 0,25. Выход из строя АКФ по тем или иным причинам доставляет немалое огорчение. Однако если приложить немного смекалки, разобраться в конструкции самого фонарика и знать элементарную электротехнику, то его можно отремонтировать, и маленький друг еще достаточно долго и надежно послужит.

    Схемотехника. Конструкция

    Начнем, как положено, с изучения руководства по эксплуатации 2.424.005 Р3 Фонарь аккумуляторный "Электроника В6-05". Несоответствия начинаются сразу после внимательного сравнения схемы электрической принципиальной (рис.1) и конструкции фонарика. В схеме плюс - от АКБ, а минус подключается на лампочку НL1.

    Реально коаксиальный вывод НL1 постоянно соединен с плюсом АКБ, а минус подключается через S1 к резьбовому цоколю. Внимательно осмотрев монтажные соединения, сразу заметим, что НL1 присоединена не по схеме, конденсатор С1 соединен не с VD1 и VD2, как показано на рис.1, а с упругим контактом конструкции, прижимающим минус АКБ, что конструктивно и технологически удобно, поскольку С1, как самый габаритный элемент, достаточно жестко смонтирован с элементами конструкции - одним из штырей сетевой вилки, конструктивно объединенной с корпусом АКФ и пружинным контактом АКБ; резистор R2 соединен не последовательно с конденсатором С1, а припаян одним концом ко второму штырю сетевой вилки, а вторым - к держателю.U1. Это также не учтено и в схеме АКФ в . Остальные соединения соответствуют схеме, изображенной на рис.2.

    Но если не учитывать конструктивные и технологические плюсы, которые вполне очевидны, то в принципе не имеет значения, как подключен С1, по рис.1 или рис.2. Кстати, при хорошей идее доработки схемы зарядного устройства (ЗУ) АКФ не удалось избежать применения "лишних" элементов.

    Схему ЗУ при сохранении общего алгоритма можно существенно упростить, собрав ее согласно рис.3.


    Разница заключается в том, что элементы VD1 и VD2 на схеме по рис. 3 выполняют по две функции, что позволило уменьшить количество элементов. Стабилитрон VD1 для отрицательной полуволны питающего напряжения на VD1, VD2 служит выпрямительным диодом, он же является и источником положительного опорного напряжения для схемы сравнения (СС), функцию (вторую) которой выполняет также VD2. CC работает следующим образом: когда величина ЭДС на ка тоде VD2 меньше, чем напряжение на его аноде, идет нормальный процесс заряда АКБ. По мере заряда значение ЭДС на АКБ увеличивается, и когда оно достигнет напряжения на аноде, VD2 закроется, и заряд прекратится. Величина опорного напряжения VD1 (напряжение стабилизации) должна равняться сумме падения напряжения в прямом направлении на VD2 + падение напряжения на R3VD3 + ЭДС АКБ и подбирается под конкретный ток заряда и конкретные элементы. ЭДС полностью заряженного диска 1,35 В .

    При такой схеме заряда светодиод как индикатор состояния заряженности АКБ в начале процесса горит ярко, по мере заряда его яркость уменьшается, а при достижении полного заряда он гаснет. Если в процессе эксплуатации замечено, что произведение тока заряда на время свечения VD3 в часах значительно меньше величины его теоретической емкости, то это говорит не о том, что компаратор на VD2 неправильно работает, а о том, что один или несколько дисков имеют недостаточную емкость.

    Условия эксплуатации

    Теперь проанализируем заряд и разряд АКБ. По ТУ (12МО.081.045) время заряда полностью разряженной АКБ при напряжении 220 В - 20 ч. Зарядный ток при С1=0,5 мкФ с учетом разброса по емкости и колебаний величины питающего напряжения около 25-28 мА, что соответствует рекомендациям , причем рекомендуемый ток разряда в два раза больше тока заряда, т.е. 50

    мА. Количество полных циклов заряд-разряд 392. В реальной конструкции АКФ разряд осуществляется на штатную лампочку 3,5 В х 0,15 А (при трех дисках), хотя и дает повышение яркости, однако также по причине увеличения тока от АКБ сверх рекомендованного по ТУ, отрицательно сказывается на сроке службы АКБ, поэтому такая замена вряд ли целесообразна, так как в отдельных экземплярах дисков это может вызвать усиленное газообразование, что в свою очередь, приведет к увеличению давления внутри корпуса и к ухудшению внутреннего контакта, осуществляемого тарельчатой пружиной между таблеточным пакетом активного вещества и минусовой частью корпуса. Это же приводит к выделению через уплотнение электролита, вызывающего коррозию и связанное с ней ухудшение контакта как между самими дисками, так и между дисками и металлическими элементами конструкции АКФ.

    Помимо всего, из-за негерметичности из электролита испаряется вода, в результате чего увеличивается внутреннее сопротивление диска и всей АКБ. При дальнейшей эксплуатации такого диска он выходит из строя окончательно в результате превращения электролита частично в кристаллическое КОН, частично - в поташ К2СО3. Именно по этим причинам вопросам заряда - разряда необходимо уделить особое внимание.

    Практический ремонт

    Итак, один из трех аккумуляторов "забарахлил". Оценить его состояние можно авометром. Для чего (в соответствующей полярности) кратковременно замыкают каждый диск щупами авометра, установленного на измерение постоянного тока в пределах 2-2,5 А.

    У хороших, свежезаряженных дисков ток КЗ должен находиться в пределах 2-3 А. При ремонте АКФ могут возникнуть два логических варианта: 1) нет запасных дисков; 2) есть запасные диски.

    В первом случае самым простым будет такое решение. Вместо третьего, негодного диска устанавливают шайбу из медного корпуса негодного транзистора типа КТ802, который к тому же по габаритам хорошо вписывается в большинство конструкций АКФ. Для изготовления шайбы удаляют выводы электродов транзистора и зачищают оба торца мелким напильником от покрытия до появления меди, затем их шлифуют на мелкозернистой шлифовальной бумаге, уложенной на ровную плоскость, после чего полируют до блеска на куске войлока с нанесенным слоем пасты ГОИ. Все эти операции необходимы для уменьшения влияния переходного сопротивления на время горения. То же относится и к контактным торцам дисков, потемневшие поверхности которых в процессе эксплуатации желательно по тем же причинам перешлифовать.

    Поскольку удаление одного диска приведет к уменьшению яркости свечения HL1, то в АКФ устанавливают лампочку 2,5 В на 0,15 А или, что еще лучше, лампочку 2,5 В на 0,068 А, которая хоть и имеет меньшую мощность, однако уменьшение тока разряда позволяет приблизить его к рекомендуемому по ТУ, что благоприятно скажется на сроке эксплуатации дисков АКБ. Практическая разборка и анализ исправимых причин выхода из строя дисков показал, что достаточно часто причиной неработоспособности является разрушение тарельчатой пружины. Поэтому не спешите выбрасывать негодный диск и, если повезет, его можно заставить еще поработать. Эта операция потребует достаточной аккуратности и определенных слесарных навыков.

    Для ее проведения потребуются маленькие слесарные тиски, шарик от шарикоподшипника с диаметром около 10 мм и гладкая стальная пластина толщиной 3-4 мм. Пластину через прокладку из электрокартона толщиной 1мм подкладывают между губками и плюсовой частью корпуса, а шарик располагают между второй губкой и минусовой частью корпуса, ориентируя шарик примерно по ее центру. Прокладку из электрокартона предназначена для устранения короткого замыкания диска, а пластинка - для равномерного распределения усилия и исключения деформации положительной части корпуса АКБ от насечки на губках тисков. Их размеры очевидны. Постепенно зажимают тиски. Вдавив шарик на 1-2 мм, извлекают диск из приспособления и контролируют ток КЗ. Обычно после одного-двух прижимов больше половины заряженных дисков начинают показывать увеличение тока КЗ вплоть до 2-2,5 А. После некоторой величины хода усилие прижима резко возрастает, что означает упор деформируемой части корпуса в таблетку. Дальнейший прижим нецелесообразен, поскольку приводит к разрушению АКБ. Если после упора ток КЗ не увеличивается, то диск окончательно непригоден.

    Во втором случае простая замена диска на другой может также не принести желаемого результата, поскольку у вполне работоспособных дисков имеется так называемая "емкостная" память.

    В связи с тем что при работе в составе батареи всегда имеется хотя бы один диск, у которого меньше значения емкости, отчего при его разряде резко возрастает внутреннее сопротивление, что ограничивает возможность полного разряда остальных дисков. Подвергать такую АКБ некоторому перезаряду для устранения этого явления нецелесообразно, поскольку это не приведет к увеличению емкости, а только к выходу из строя наиболее хороших дисков. Поэтому при замене хотя бы одного диска в АКБ их все желательно подвергнуть принудительной тренировке (дать один полный цикл заряд-разряд) для устранения вышеуказанных явлений. Заряд каждого диска проводят в том же АКФ, применив вместо двух дисков шайбы из транзисторов.

    Разряд проводят на резисторе сопротивлением 50 Ом, обеспечивающем ток разряда 25 мА (что соответствует ТУ), до достижения напряжения на нем 1 В. После этого диски составляют в батарею и заряжают совместно. Зарядив всю АКБ, разряжают ее на штатную HL до достижения на АКБ 3 В. Под нагрузкой той же HL еще раз проверяют ток КЗ каждого диска, разряженного до 1 В.

    У дисков, пригодных для работы в составе АКБ, ток КЗ каждого диска должен быть примерно одинаковым. Емкость АКБ можно считать достаточной для практического пользования, если время разряда до 3 В составляет 30-40 мин.

    Детали

    Предохранитель.U1. Наблюдая при проведении ремонтов за эволюцией схемотехники АКФ около двух десятилетий, замечено, что в середине 80-х годов некоторые предприятия начали выпускать АКБ без плавких предохранителей с токоограничительным резистором 0,5 Вт и сопротивлением 150-180 Ом, что вполне оправдано, поскольку при пробое С1 роль.U1 играл R2 (рис. 1) или R2 (рис. 2 и 3), проводящий слой которого испарялся гораздо раньше (чем сгорал.U1 на 0,15 А), прерывая цепь, что и требуется от предохранителя. Практика подтверждает, что если токоограничительный резистор мощностью 0,5 Вт в реальной схеме АКФ ощутимо греется, то это однозначно свидетельствует о значительной утечке С1, (которую затруднительно определить авометром, а также в связи с изменением ее величины во времени), и его необходимо заменить.

    Конденсатор С1 типа МБМ 0,5 мкФ на 250 В является самым ненадежным элементом. Он рассчитан на применение в цепях постоянного тока с соответствующим напряжением, а применение таких конденсаторов в сетях переменного тока, когда амплитуда напряжения в сети может достигать 350 В, и если учитывать наличие в сети многочисленных пиков от индуктивных нагрузок, а также время зарядки полностью разряженного АКФ по ТУ (около 20 ч), то надежность его как радиоэлемента становится весьма малой. Наиболее надежным конденсатором, который имеет оптимальные габариты, позволяющие вписать его в различные по конструктивным размерам АКФ, является конденсатор К42У-2 0,22 мкФ Ч 630 В или даже К42У 0,1 мкФ Ч 630 В. Уменьшение зарядного тока примерно до 15-18 мА, при 0,22 мкФ и до 8-10 мА при 0,1 мкФ практически вызывает лишь увеличение времени его заряда, что несущественно.

    Светодиодный индикатор зарядного тока VD3. В АКФ, которые не имеет светодиодного индикатора тока заряда, его можно установить, включив его в разрыв цепи в точке А (рис. 2).

    Светодиод включен параллельно измерительному резистору R3 (рис. 4), который при новом изготовлении или уменьшении С1 необходимо подобрать. При емкости С1, равной 0,22 мкФ, вместо 0,5 мкФ, яркость VD3 уменьшится, а при 0,1 мкФ VD3 может вообще не засветиться. Поэтому учитывая вышеуказанные токи заряда, в первом случае резистор R3 надо пропорционально уменьшению тока увеличить, а во втором - удалить совсем. Практически с учетом того, что работать с 220 В весьма небезопасно, сопротивление R3 лучше подобрать, подключив через миллиамперметр к точке B (рис. 3) регулируемый источник постоянного тока (РИПТ), и контролируя ток заряда. Вместо R3 временно подсоединяют потенциометр сопротивлением 1 кОм, включенный реостатом на минимум сопротивления. Увеличивая напряжение РИПТ, устанавливают ток заряда АКБ, равный 25 мА.

    Не изменяя установленного напряжения РИПТ, включают миллиамперметр в разрыв цепи VD3 в точке С и, постепенно увеличивая сопротивление потенциометра, добиваются тока через него 10 мА, т.е. половину от максимального для АЛ307 . Этот момент особенно важен для схем без стабилитрона, в которых в первый момент после включения при зарядке С1 ток через VD3 может стать большим, несмотря на наличие токоограничительного резистора R1, и может привести к выходу VD3 из строя. В установившемся режиме R1 практически не влияет на ток заряда в связи со его малым сопротивлением по сравнению с реактивным (около 9 кОм) сопротивлением С1. При доработке VD3 устанавливают в отверстие диаметром 5 мм, просверленное симметрично линии разъема в корпусе между опорами пружинного контакта, подсоединенного к коаксиальному выводу HL1, и плюсом АКБ. Измерительный резистор размещают там же.

    Выпрямительные диоды

    Учитывая наличие рывка тока при начальном заряде С1, для повышения надежности в выпрямителе АКФ желательно использовать любые кремниевые импульсные диоды с обратным напряжением от 30 В.

    Нестандартное применение АКФ

    Изготовив из цоколя негодной лампочки и разъема питания радиоприемника переходник, АКФ можно использовать не только как источник света, но и как источник вторичного электропитания с напряжением 3,75 В. При среднем уровне громкости (ток потребления 20-25 мА) его емкости вполне достаточно для прослушивания ВЭФ в течение нескольких часов.

    В отдельных случаях при отсутствии электроэнергии АКФ можно подзаряжать и от радиотрансляционной линии. Владельцы АКФ со светодиодным индикатором могут наблюдать процесс динамического мигания светодиода. Особенно ровно VD3 горит от "тяжелого" рока, поэтому если не любо слушать - заряжай АКФ, используй энергию в мирных целях. Физический смысл данного явления заключается в уменьшении реактивного сопротивления с ростом частоты, поэтому при значительно меньшем напряжении (15-30 В) импульсного значения тока заряда через индикатор достаточно для его свечения и, естественно, подзаряда.

    Литература:

    1. Вузецкий В.Н. Зарядное устройство для аккумуляторного фонарика// Радіоаматор.- 1997.- №10.- С.24.
    2. Терещук Р.М. и др. Полупроводниковые приемно-усилительные устройства: Справ. радиолюбителя.- Киев: Наук. думка, 1988

    Посвящается всем тем, кто имеет аналогичные светодиодные фонари.
    Типовая проблема последних - свинцовый (AGM) аккумулятор на 4 Вольта, который «неожиданно» перестает работать.
    Недавно был обзор с решением аналогичной проблемы. .
    Я пошел немного по другому пути, позже будет понятно почему.

    Сначала немного о фонарях:


    Бюджетные фонари имеющие приличные размеры и посредственные характеристики. Но их продолжают покупать и использовать. Фонарь содержит в себе множество сверхъярких светодиодов 3-5мм.




    Включены светодиоды как правило параллельно, через токоограничивающие резисторы.


    Сердцем фонаря является свинцовая (AGM) аккумуляторная батарея емкостью до 4.5Ач.


    Положительным моментом можно считать неприхотливость аккумулятора. Возможность подзарядки в любое время и работа при отрицательных температурах. Последний момент в моей переделке не учитывается, поскольку эксплуатация фонаря при значительной отрицательной температуре не планируется.

    Забегая вперед скажу, что времени на переделку фонаря потребовалось около 2х часов.

    Вскрываем фонарь и извлекаем дохлую батарею:

    Для начала произвел замер потребляемого тока при напряжении на батарее 3.84 В:




    Последовательно светодиодам установлены резисторы для ограничения тока. Из за изменившегося напряжения фонаря можно было бы понизить сопротивления резисторов, но делать этого я не стал. Яркость упала незначительно, с этим можно смириться, да и хлопотно это по времени.
    При напряжении 4.2В ток превышал 1 А. Это стало отправной точкой при решении проблемы. Использование кит набора дешевого повербанка отпадает из за неспособности последнего выдать необходимый ток.

    Решение было на поверхности:
    Два варианта плат, одна с защитой от переразряда, другая без защиты:


    Немного о платах. Контроллер один из самых распространенных TP4056. Я использовал аналогичную плату . Документация на контроллер . Контроллер обеспечивает ток заряда до 1 Ампера, поэтому можно примерно рассчитать время заряда аккумуляторов.
    Какую плату использовать в вашем фонаре зависит от типа применяемых элементов 18650. Если есть защита от переразряда, тогда ту что справа. Иначе можно возложить функцию защиты аккумулятора на плату с коей она замечательно справляется. Платы отличаются между собой наличием дополнительных деталей, таких как контроллер разряда DW01 и силовой ключ 8205(сдвоенный полевой транзистор) для отключения в нужный момент аккумулятора от нагрузки или защиты от перезаряда.

    Места внутри много, можно установить хоть десяток аккумуляторов, но я для пробы обошелся одним.


    Последний был извлечен из старой батареи ноутбука и протестирован на зарядном устройстве IMAX B6:




    При токе разряда 1 Ампер, остаточная емкость 1400 мАч. Этого хватит примерно на час- полтора непрерывной работы фонаря.

    Пробуем подключить аккумулятор к плате:




    Провода к аккумулятору паять надо аккуратно, не перегревая последний. Если не уверены, то можно использовать холдер для аккумулятора.


    Так же желательно соблюдать цветовую дифференциацию штанов использовать провода разного цвета для подключения питания.

    Подключаем плату через кабель micro USB к блоку питания:




    Загорелся красный светодиод, заряд пошел.

    Теперь надо установить плату- контроллер заряда в фонарь. Специальных креплений не предусмотрено, поэтому делаем колхоз используя любимый всеми суперклей.


    Склеить хоть раз пальцы святая обязанность каждого, кто пользовался .

    Изготавливаем кронштейн из подходящей металлической пластинки (подойдет элемент из детского металлического конструктора).


    Для того, что бы избежать замыкания используем изоляционный материал. Я применил кусочек термоусадочной трубки.

    Закрепил плату предварительно подключив провода что шли ранее к свинцовому АКБ:




    Снаружи выглядит так:


    Видны мелкие дефекты по бокам от разъема. Исправляются следующим образом: ямка или щель засыпается пищевой содой и потом 1-2 капли суперклея. Клей схватывается мгновенно. Через 30 секунд можно надфилем обработать поверхность.
    Аккумулятор внутри закрепляем любым доступным способом. Я применил герметик, кому то удобнее клеевой пистолет.
    Отверстие разъема подзарядки будет позже закрыто резиновым колпачком.

    Собираем и включаем:


    Работает.
    Upd: Если планируется подключение нескольких аккумуляторов параллельно, то перед соединением, во избежание порчи последних необходимо привести все аккумуляторы к единому ЭДС (по простому напряжение).

    Выводы: Расходы по деньгам примерно 100 рублей и 2 часа времени. Аккумулятор в расчет не беру, использовал полудохлый с большим внутренним сопротивлением. Получаю рабочий фонарь. Описываемые мной процедуры не панацея, существуют и другие варианты доработки фонарей. Индикацию процесса зарядки/готовности выводить на корпус не стал. Свечение светодиодов синий/красный видно сквозь корпус.
    Плата кстати может иметь любой разъем какой вам понравится mini или micro USB. Все зависит от наличия нужных кабелей. Кроме всего прочего у нас на руках остается блок питания для зарядки свинцового аккумулятора - можно будет с пользой пристроить куда нибудь.

    Плюсы:
    Рабочий фонарь, меньший вес (хотя это малозначительный факт). заряжать можно в любом доступном месте при наличии USB зарядки или компьютера.
    Минусы:
    Аккумулятор боится мороза, меньшая яркость (примерно на 10-15%) по отношению к заводскому варианту. В конце разряда яркость падает, заметно на глаз. Для решения этой проблемы можно поставить более емкий (или несколько) аккумулятор.