Схемы параметрических стабилизаторов на транзисторе. Параметрический стабилизатор напряжения на транзисторе

До недавнего времени для питания маломощных каскадов радиоэлектронной аппаратуры использовались параметрические стабилизаторы напряжения. Сейчас намного дешевле и эффективней применить малошумящие компенсационные стабилизаторы, подобные ADP3330 или ADM7154. Тем не менее в ряде уже производящейся аппаратуры уже применены параметрические стабилизаторы, поэтому необходимо уметь их расчитывать. Наиболее распространенная схема параметрического стабилизатора приведена на рисунке 1.


Рисунок 1. Схема параметрического стабилизатора

На данном рисунке приведена схема стабилизатора положительного напряжения. Если требуется стабилизировать отрицательное напряжение, то стабилитрон ставится в противоположном направлении. Напряжение стабилизации полностью определяется типом стабилитрона.

Расчет стабилизатора таким образом сводится к расчету резистора R 0 . Прежде чем начинать его расчет следует определиться с основным дестабилизирующим фактором:

  • входное напряжение;
  • ток потребления.

Нестабильное входное напряжение при стабильном токе потребления присутствует обычно в источниках опорного напряжения для аналого-цифровых и цифро-аналоговых преобразователей. Для параметрического стабилизатора, питающего определенный узел аппаратуры, приходится учитывать изменение выходного тока. В приведенной на рисунке 1 схеме при постоянном входном напряжении ток I всегда будет стабильным. Если нагрузка будет потреблять меньше тока, то его излишки уйдут в стабилитрон.

I = I ст + I н (1)

Поэтому максимальный ток нагрузки не может превышать максимальный ток стабилитрона. Если входное напряжение не будет постоянным (а эта ситуация очень распространена), то допустимый диапазон изменения тока нагрузки дополнительно уменьшается. Сопротивление резистора R 0 расчитывается по закону Ома. При расчете используется минимальное значение входного напряжения.

(2)

Максимальный диапазон изменения входного напряжения можно определить по закону Киргофа. После небольших преобразований его можно свести к следующей формуле:


(3)

Таким образом расчет параметрического стабилизатора достаточно прост. Именно это и составляет его привлекательность. Однако при выборе типа стабилизатора следует иметь в виду то обстоятельство, что стабилитрон (но не стабистор) является источником шума. Поэтому описанный стабилизатор не следует применять в ответственных блоках радиоаппаратуры. Еще раз подчеркну, что при проектировании новой аппаратуры в качестве вторичного источника питания лучше подойдут малогабаритные малошумящие компенсационные стабилизаторы, такие как ADP7142.

Литература:

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне (http://www.radiohlam.ru/)

Для некоторых электрических цепей и схем вполне хватает обычного блока питания, не имеющего стабилизации. Источники тока такого типа обычно состоят из понижающего трансформатора, выпрямительного диодного моста и фильтрующего конденсатора. Выходное напряжение блока питания зависит от количества витков вторичной обмотки на понижающем трансформаторе. Но как известно сетевое напряжение 220 вольт нестабильно. Оно может колебаться в некоторых пределах (200-235 вольт). Следовательно и выходное напряжение на трансформаторе тоже будет «плавать» (в место допустим 12 вольт будет 10-14, или около того).

Электротехника, которая особо не капризна к небольшим изменения питающего постоянного напряжения может обойтись таким вот простым блоком питания. Но вот более чувствительная электроника уже это не терпит, она от этого даже может выйти из строя. Так что возникает необходимость в дополнительный схеме стабилизации постоянного выходного напряжения. В этой статье я привожу электрическую схему достаточно простого стабилизатора постоянного напряжения, который имеет стабилитрон и транзистор. Именно стабилитрон выступает в роли опорного элемента, который определяет и стабилизирует выходное напряжения блока питания.

Теперь давайте перейдем к непосредственному разбору электрической схемы простого стабилизатора постоянного напряжения. Итак, к примеру у нас имеется понижающий трансформатор с выходным переменным напряжением в 12 вольт. Эти самые 12 вольт мы подаем на вход нашей схемы, а именно на диодный мост и фильтрующий конденсатор. Диодный выпрямитель VD1 из переменного тока делает постоянный (но скачкообразный). Его диоды должны быть рассчитаны на ту максимальную силу тока (с небольшим запасом где-то 25%), который может выдавать блок питания. Ну, и напряжение их (обратное) должно быть не ниже выходного.

Фильтрующий конденсатор C1 сглаживает эти скачки напряжения, делая форму постоянного напряжения более ровной (хотя и не идеальной). Его емкость должна быть от 1000 мкф до 10 000 мкф. Напряжение, также больше выходного. Учтите, что есть такой вот эффект - переменное напряжение после диодного моста и фильтрующего конденсатора электролита увеличивается примерно на 18%. Следовательно в итоге мы уже получим на выходе не 12 вольт, а где-то 14,5.

Теперь начинается часть стабилизатора постоянного напряжения. Основным функциональным элементом тут является сам стабилитрон. Напомню, что стабилитроны имеют способность в некоторых пределах стабильно держать на себе определенное постоянное напряжение (напряжение стабилизации) при обратном своем включении. При подачи на стабилитрон напряжения от 0 до напряжения стабилизации оно просто будет увеличиваться (на концах стабилитрона). Дойдя до уровня стабилизации напряжение будет оставаться неизменным (с незначительным ростом), а расти начнет сила тока, протекающего через него.

В нашей схеме простого стабилизатора, который на выходе должен выдавать 12 вольт, стабилитрон VD2 рассчитан на напряжение 12,6 (поставим стабилитрон на 13 вольт, это соответствует Д814Д). Почему 12,6 вольт? Потому, что 0,6 вольт осядут на транзисторном переходе эмиттер-база. А на выходе получится ровно 12 вольт. Ну, а поскольку мы ставим стабилитрон на 13 вольт, то на выходе БП будет где-то 12,4 В.

Стабилитрон VD2 (создающим место опорного постоянного напряжения) нуждается в ограничителе тока, который будет предохранять его от чрезмерного перегрева. На схеме эту роль выполняет резистор R1. Как видно он подключен последовательно стабилитрону VD2. Еще один фильтрующий конденсатор электролит C2 стоит параллельно стабилитрону. Его задача также сглаживать излишки пульсаций напряжения. Можно обойтись и без него, но все же лучше будет с ним!

Далее на схеме мы видим биполярный транзистор VT1, который подключен по схеме общий коллектором. Напомню, схемы подключения биполярных транзисторов по типу общий коллектор (это еще называется эмиттерный повторитель) характеризуются тем, что они значительно усиливают силу тока, но при этом нет никакого усиления по напряжению (даже оно немного меньше входного, именно на те самые 0,6 вольт). Следовательно мы на выходе транзистора получаем то постоянное напряжение, которое имеется на его входе (а именно напряжение опорного стабилитрона, равное 13 вольтам). И поскольку эмиттерный переход на себе оставляет 0,6 вольта, то и на выходе транзистора уже будет не 13, а 12,4 вольта.

Как вы должны знать, чтобы транзистор начал открываться (пропускать через себя управляемые токи по цепи коллектор-эмиттер) ему нужен резистор для создания смещения. Эту задачу выполняет все тот же резистор R1. Изменяя его номинал (в определенных пределах) можно менять силу тока на выходе транзистора, а значит и на выходе нашего стабилизированного блока питания. Тем, кто желает с этим поэкспериментировать советую на место R1 поставить подстроечное сопротивление номиналом около 47 килоом. Подстраивая его смотрите, как будет изменяться сила тока на выходе блока питания.

Ну, и на выходе схемы простого стабилизатора постоянного напряжения стоит еще один небольшой фильтрующий конденсатор электролит C3, сглаживающий пульсации на выходе стабилизированного блока питания. Параллельно ему припаян резистор нагрузки R2. Он замыкает эмиттер транзистора VT1 на минус схемы. Как видим схема достаточно проста. Содержит минимум компонентов. Она обеспечивает вполне стабильное напряжение на своем выходе. Для питания многой электротехники данного стабилизированного блока питания будет вполне хватать. Данный транзистор рассчитан на максимальную силу тока в 8 ампер. Следовательно для такого тока нужен радиатор, который будет отводить излишек тепла от транзистора.

P.S. Если параллельно стабилитрону поставить еще переменный резистор номиналом 10 килоом (средний вывод подсоединяем к базе транзистора), то в итоге мы получим уже регулируемый блок питания. На нем можно плавно изменять выходное напряжение от 0 до максимума (напряжение стабилитрона минус те самые 0,6 вольт). Думаю такая схема уже будет более востребована.

В схеме выпрямительного устройства, рассмотренного на лекции №2 (рис. 3.1) для преобразования переменного напряжения сети в постоянное напряжение рассмотрены трансформатор, выпрямитель и сглаживающий фильтр. Напряжение на нагрузке поддерживается постоянным по значению с помощью стабилизатора Ст. Простейший стабилизатор напряжения – параметрический, в котором используются специальный диод – СТАБИЛИТРОН.

Стабилитрон имеет специфическую вольтамперную характеристику (ВАХ) в обратном включении (рис.3.2). При отрицательном напряжении ВАХ имеет достаточно протяженный участок, на котором напряжение изменяется мало, а ток изменяется значительно.

Рис. 3.2. Пример вольтамперной характеристики полупроводникового стабилитрона.

Стабилитрон используется в параметрическом стабилизаторе напряжения (рис.3.3а).


Рис. 3.3. Параметрический стабилизатор напряжения.

а) электрическая схема стабилизатора,

б) линейная схема замещения для малых изменений токов и напряжений (R диф =ΔU ст. / ΔI ст = ΔU Н / ΔI ст –дифференциальное сопротивление)

в) графическое представление состояния стабилитрона и принципа стабилизации напряжения на нагрузке (ΔU Н <<ΔU вх) при изменении напряжения U вх и большом сопротивлении нагрузки (R Н >> R диф).

Принцип стабилизации заключается в следующем. Напряжение на стабилитроне, т.е. на нагрузке, остается постоянным из-за изменения тока стабилитрона и вызванного этим изменения напряжения на балластном резисторе.

Схема на рис.3.3а описывается нелинейной системой уравнений:

I 0 - I ст - I н = 0 (1)

U ст (I ст) - R н I н = 0 (2)

- U вх + R б I 0 + R н I н = 0 (3)

Преобразуем систему к одному уравнения относительно тока I ст.

Из (1) имеем I н = I 0 - I ст, тогда из (3) следует

- U вх + R б I 0 + R н (I 0 - I ст) = 0 ,

отсюда I 0 =(R н I ст + U вх) / (R б + R н) и из (2) получаем

U ст (I ст) = R н [ (R н I ст + U вх) / (R б +R н) - I ст ]. (4)

Этот же результат можно получить, если применить к схеме на рис.3.3а преобразование по методу эквивалентного активного двухполюсника, в который включим источник входного напряжения U вх, балластный резистор R б и приемник R н (рис. 3.4).

Рис. 3.4. Преобразование части схемы методом эквивалентного активного двухполюсника.

Эквивалентный источник имеет

ЭДС E экв = U вх R н / ( R н + R б) и

сопротивление R экв = R б R н / ( R н + R б).

После эквивалентного преобразования схема рис.3.3а приобретает вид (рис.3.5)

Из схемы на рис.3.5 получаем уравнение состояния параметрического стабилизатора:

U ст (I ст) = E экв - R экв I ст (5)

Если в (5) подставить выражения вместо E экв и R экв, то получим уравнение (4). Применение метода эквивалентного источника позволяет лучше представить физически принцип действия стабилизатора, зависимость его свойств от параметров элементов.

Уравнение (4) пригодно для анализа свойств параметрического стабилизатора при любых параметрах элементов.

Положим (наиболее частый случай), что сопротивление нагрузки R н значительно больше сопротивления балластного резистора R б. Тогда сопротивление нагрузки можно не учитывать и в схеме виден делитель входного напряжения из балластного резистора R б и стабилитрона VD (рис.3.3а). Состояние цепи устанавливается в соответствие с рис.3.3в в точке A , где пересекаются ВАХ стабилитрона и прямая линия 1, отсекающая на осях отрезки U вх1 и U вх1 /R б. При увеличении входного напряжения до U вх2 (линия 2) увеличивается ток стабилитрона (рабочая точка A ’), увеличивается напряжение на R б, а напряжение на нагрузке соответственно увеличивается на ΔU н. При этом, как видно из графиков ΔU н << ΔU вх (R диф <<R б).

Для получения простых соотношений для оценки качества параметрического стабилизатора получим линейную его схему замещения с помощью уравнения (5).

Приближенно, если рабочая точка А стабилитрона находится на участке стабилизации, ВАХ стабилитрона на участке стабилизации можно заменить прямой линией с угловым коэффициентом R диф =ΔU ст. / ΔI ст = ΔU Н / ΔI ст:

U ст (I ст) = U 0 + R диф I ст

С учетом этой линеаризации уравнение (5) можно переписать:

U 0 + R диф I ст =E экв -R экв I ст (6).

Здесь E экв = R Н U вх /(R Н + R Б) и R экв = R Б R Н /(R Б + R Н).

Из (6) следует уравнение, если учесть, что R экв >> R диф:

I ст = (E экв - U 0)/ (R экв + R диф) =(E экв - U 0)/ R экв (7).

Подставим сюда выражение для E экв и получим

I ст = (R Н U вх /(R Н + R Б) - U 0)/ R экв = U вх /R Б - U 0 / R экв

и напряжения на нагрузке принимает вид:

U н =U ст (I ст)=U 0 + R диф (U вх /R Б - U 0 / R экв) (7)

Отсюда следует, что при изменениях входного напряжения:

ΔU н =(dU ст /dU вх) * Δ U вх = R диф /R б * Δ U вх (8)

Отношение приращений напряжения на нагрузке и на входе параметрического стабилизатора равно:

ΔU н /Δ U вх = R диф /R б (8)

Если изменяется сопротивление нагрузки, то

U н = U 0 + R диф [U вх /R Б - U 0 (R Б + R Н)/ (R Б R Н)] (9)

Из уравнения (9) следует, что при изменениях сопротивления нагрузки так же будет достигаться эффект стабилизации напряжения на нагрузке

ΔU н =(dU ст /dR Н) * Δ R Н = R диф / R 2 н * U 0 Δ R Н

В практических случаях параметры схемы и стабилитрона подбираются таким образом, чтобы рабочая точка на в.а.х. стабилитрона перемещалась в пределах участка стабилизации (I ст.мин ,I ст.макс) при необходимом U ст. , которые записаны в паспорте стабилитрона.

С помощью параметрического полупроводникового стабилизатора напряжения можно получить коэффициент стабилизации, который равен отношению относительных изменений входного и выходного напряжений:

K ст. = (ΔU вх /U вх)/ (ΔU вых /U вых) <=100.

Во многих случаях это значение оказывается недостаточным и тогда применяются более сложные «компенсационные стабилизаторы напряжения», содержащие транзисторы.

Заметим так же, что в параметрическом стабилизаторе напряжения нагревание балластного резистора приводит к потерям энергии. Поэтому к.п.д. параметрического стабилизатора напряжения не превышает 30%.

Демонстрация ВАХ реального стабилитрона demo3_1 приведена на рис. 3.6

Рис. 3.6. К demo3_1.

Демонстрация работы параметрического стабилизатора напряжения demo3_2 приведена на рис. 3.7.

Рис. 3.7.К demo3_2.

Замечание.

Рассмотренный параметрический стабилизатор напряжения позволяет познакомиться с широко применяемым методом описания нелинейных схем с помощью линеаризованных схем замещения. Запишем систему уравнений (1)-(3), заменив в уравнении (2) ВАХ стабилитрона линеаризованным выражением:

I 0 -I ст -I н =0 (1а)

U 0 +R диф I ст -R н I н =0 (2а)

- U вх +R б I 0 +R н I н =0 (3а)

Для малых изменений токов и напряжений, вызванных изменением входного напряжения, отсюда следует:

ΔI 0 -ΔI ст -ΔI н =0 (9)

R диф ΔI ст -R н ΔI н =0 (10)

U вх +R б ΔI 0 +R н ΔI н =0 (11)

Этой системе уравнений соответствует схема замещения, приведенная на рис.3.3 б.

Как известно, ни одно электронное устройство не работает без подходящего источника питания. В самом простейшем случае, в качестве источника питания может выступать обычный трансформатор и диодный мост (выпрямитель) со сглаживающим конденсатором. Однако, не всегда под рукой есть трансформатор на нужное напряжение. Да и тем более, такой источник питания нельзя назвать стабилизированным, ведь напряжение на его выходе будет зависеть от напряжения в сети.

Вариант решения этих двух проблем - использовать готовые стабилизаторы, например, . Они удобны в использовании, но опять-таки не всегда есть под рукой. Ещё один вариант - использовать параметрический стабилизатор на стабилитроне и транзисторе. Его схема показана ниже.

Схема стабилизатора на 1 транзисторе

VD1-VD4 на этой схеме - обычный диодный мост, преобразующий переменное напряжение с трансформатора в постоянное. Конденсатор С1 сглаживает пульсации напряжения, превращая напряжение из пульсирующего в постоянное. Параллельно этому конденсатору стоит поставить плёночный или керамический конденсатор небольшой ёмкости для фильтрации высокочастотных пульсаций, т.к. при большой частоте электролитический конденсатор плохо справляется со своей задачей. Электролитические конденсаторы С2 и С3 в этой схеме стоят с этой же целью - сглаживание любых пульсаций.

Цепочка R1 - VD5 служит для формирования стабилизированного напряжения, резистор R1 в ней задаёт ток стабилизации стабилитрона. Резистор R2 нагрузочный. Транзистор в этой схеме гасит на себе всю разницу входного и выходного напряжения, поэтому на нём рассеивается приличное количество тепла. Данная схема не предназначена для подключения мощной нагрузки, но, тем не менее, транзистор стоит прикрутить к радиатору с использованием теплопроводящей пасты.

Напряжение на выходе схемы зависит от выбора стабилитрона и значения резисторов. Ниже показана таблица, в которой указаны номиналы элементов для получения на выходе 5, 6, 9, 12, 15 вольт.

Вместо транзистора КТ829А можно использовать импортные аналоги, например, TIP41 или BDX53. Диодный мост допустимо ставить любой, подходящий по току и напряжению. Кроме того, можно собрать его из отдельных диодов. Таким образом, при использовании минимума деталей получается работоспособный стабилизатор напряжения, от которого можно питать другие электронные устройства, потребляющие небольшой ток. Фото собранного мной стабилизатора.

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно:-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока , напряжение , частота сигнала и . Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение . От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон . Иногда его еще называют диодом Зенера . На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод , а другой вывод – анод .

Стабилитроны выглядят также, как и диоды . На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза


Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.


Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:


Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.


Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:


5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой


Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и ! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого .


Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.


Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:


где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения . Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл;-)

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания , а справа замеряем мультиметром полученное напряжение:


Теперь внимательно следим за показаниями мультиметра и блока питания:


Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.


Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!


Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.


Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:


где

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.


Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).


Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения . В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:


Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного . Справа же, в зеленой рамке, схема стабилизации;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.