Инфракрасное излучение применение в промышленности. Инфракрасное излучение: польза и вред для человека


Из истории изучения инфракрасного излучения

Инфракрасное излучение или тепловое излучение не является открытием 20 или 21 века. Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем . Он обнаружил, что «максимум тепла» лежит за пределами красного цвета видимого излучения. Это исследование положило начало изучению инфракрасного излучения. Очень многие известные ученые приложили свои головы к изучению данного направления. Это такие имена как: немецкий физик Вильгельм Вин (закон Вина), немецкий физик Макс Планк (формула и постоянная Планка), шотландский ученый Джон Лесли (устройство измерения теплового излучения – куб Лесли), немецкий физик Густав Кирхгоф (закон излучения Кирхгофа), австрийский физик и математик Йозеф Стефан и австрийский физик Стефан Людвиг Больцман (закон Стефана-Больцмана).

Использование и применение знаний по тепловому излучению в современных отопительных устройствах вышло на передний план лишь в 1950-х годах. В СССР теория лучистого отопления разработана в трудах Г. Л. Поляка, С. Н. Шорина, М. И. Киссина, А. А. Сандера. С 1956 года в СССР было написано или переведено на русский язык множество технических книг по данной. В связи с изменением стоимости энергоресурсов и в борьбе за энергоэффективность и энергосбережение, современные инфракрасные обогреватели получили широкое применение в отоплении бытовых и промышленных зданий.


Солнечное излучение - природное инфракрасное излучение

Наиболее известным и значительным природным инфракрасным обогревателем является Солнце. По сути, это природный и самый совершенный метод обогрева, известный человечеству. В пределах Солнечной системы Солнце - это самый мощный источник теплового излучения, обусловливающий жизнь на Земле. При температуре поверхности Солнца порядка 6000К максимум излучения приходится на 0,47 мкм (соответствует желтовато-белому). Солнце находится на расстоянии многих миллионов километров от нас, однако, это не мешает ему передавать энергию через все это громадное пространство, практически не расходуя ее (энергию), не нагревая его (пространство). Причина в том, что солнечные инфракрасные лучи, проходят долгий путь в космосе, практически не имеют потерь энергии. Когда же на пути лучей встречается, какая-либо поверхность, их энергия, поглощаясь, превратится в тепло. Нагревается непосредственно Земля, на которую попадают солнечные лучи, и другие предметы, на которые так же попадают солнечные лучи. И уже земля и другие, нагретые Солнцем предметы, в свою очередь, отдают тепло окружающему нас воздуху, тем самым нагревая его.

От высоты Солнца над горизонтом самым существенным образом зависит как мощность солнечного излучения у земной поверхности, так и его спектральный состав. Различные составляющие солнечного спектра по-разному проходят через земную атмосферу.
У поверхности Земли спектр солнечного излучения имеет более сложную форму, что связано с поглощением в атмосфере. В частности, в нем отсутствует высокочастотная часть ультрафиолетового излучения, губительная для живых организмов. На внешней границе земной атмосферы, поток лучистой энергии Солнца составляет 1370 Вт/м² ; (солнечная постоянная), а максимум излучения приходится на λ=470 нм (синий цвет). Поток, достигающий земной поверхности, значительно меньше вследствие поглощения в атмосфере. При самых благоприятных условиях (солнце в зените) он не превышает 1120 Вт/м² ; (в Москве, в момент летнего солнцестояния - 930 Вт/м² ), а максимум излучения приходится на λ=555 нм (зелено-желтый), что соответствует наилучшей чувствительности глаз и только четверть от этого излучения приходится на длинноволновую область излучения, включая вторичные излучения.

Однако, природа солнечной лучистой энергии весьма отлична от лучистой энергии, отдаваемой инфракрасными обогревателя, используемыми для обогрева помещений. Энергия солнечного излучения состоит из электромагнитных волн, физические и биологические свойства которых существенно отличаются от свойств электромагнитных волн, исходящих от обычных инфракрасных обогревателей, в частности, бактерицидные и лечебные (гелиотерапия) свойства солнечного излучения полностью отсутствуют у источников излучения с низкой температурой. И все же инфракрасные обогреватели дают тот же тепловой эффект , что и Солнце, являясь наиболее комфортными и экономичными из всех возможных источников тепла.


Природа возникновения инфракрасных лучей

Выдающийся немецкий физик Макс Планк , изучая тепловое излучение (инфракрасное излучение), открыл его атомный характер. Тепловое излучение - это электромагнитное излучение, испускаемое телами или веществами и возникающее за счет его внутренней энергии, обусловленное тем, что атомы тела или вещества под действием теплоты движутся быстрее, а в случае твердого материала быстрее колеблются по сравнению с состоянием равновесия. При этом движении атомы сталкиваются, а при их столкновении происходит их ударное возбуждение с последующим излучением электромагнитных волн.
Все предметы непрерывно излучают и поглощают электромагнитную энергию . Это излучение является следствием непрерывного движения элементарных заряженных частиц внутри вещества. Один из основных законов классической электромагнитной теории гласит, что движущаяся с ускорением заряженная частица излучает энергию. Электромагнитное излучение (электромагнитные волны) это распространяющееся в пространстве возмущение электромагнитного поля, то есть изменяющийся во времени периодический электромагнитный сигнал в пространстве, состоящем из электрических и магнитных полей. Это и есть тепловое излучение. Тепловое излучение содержит электромагнитные поля различных длин волн. Поскольку атомы движутся при любой температуре, все тела при любой температуре, больше чем температура абсолютного нуля (-273°С) , излучают тепло. Энергия электромагнитных волн теплового излучения, то есть сила излучения, зависит от температуры тела, его атомной и молекулярной структуры, а также от состояния поверхности тела. Тепловое излучение происходит по всем длинам волн - от самых коротких до предельно длинных, однако принимают во внимание лишь то тепловое излучение, имеющее практическое значение, которое приходится в диапазоне длин волн: λ = 0,38 – 1000 мкм (в видимой и инфракрасной части электромагнитного спектра). Однако не всякий свет имеет особенности теплового излучения (на пример люминесценция), поэтому в качестве основного диапазона теплового излучения можно принять только диапазон инфракрасного спектра (λ = 0,78 – 1000 мкм) . Еще можно сделать дополнение: участок с длиной волны λ = 100 – 1000 мкм , с точки зрения отопления - не интересен.

Таким образом, тепловое излучение, представляет собой одну из форм электромагнитного излучения, возникающее за счёт внутренней энергии тела и имеющего сплошной спектр, то есть это часть электромагнитного излучения, энергия которого при поглощении вызывает тепловой эффект. Тепловое излучение присуще всем телам.

Все тела, имеющие температуру больше чем температура абсолютного нуля (-273°С), даже если они не светятся видимым светом, являются источником инфракрасных лучей и испускают непрерывный инфракрасный спектр. Это означает, что в излучении присутствуют волны со всеми без исключения частотами, и говорить об излучении на какой-либо определенной волне, совершенно бессмысленно.


Основные условные области инфракрасного излучения

На сегодня не существует единой классификации в разделении инфракрасного излучения на составляющие участки (области). В целевой технической литературе встречается более десятка схем деления области инфракрасного излучения на составляющие участки, и все они различаются между собой. Так как все виды теплового электромагнитного излучения имеют одинаковую природу, поэтому классификация излучения по длинам волн в зависимости от производимого ими эффекта носит лишь условный характер и определяются главным образом различиями в технике обнаружения (тип источника излучения, тип прибора учета, его чувствительность и т.п.) и в методике измерения излучения. Математически, с использованием формул (Планка, Вина, Ламберта и т.п.), так же нельзя определить точные границы областей.
Для определения длины волны (максимума излучения) существуют две разные формулы (по температуре и по частоте), дающие различные результаты, с разницей примерно в 1,8 раз (это так называемый закон смещения Вина) и плюс к этому все расчеты делаются для АБСОЛЮТНО ЧЕРНОГО ТЕЛА (идеализированного объекта), которых в реальности не существует. Реальные тела, встречающиеся в природе, не подчиняются этим законам и в той или иной степени от них отклоняются. Излучение реальных тел зависит от ряда конкретных характеристик тела (состояния поверхности, микроструктуры, толщины слоя и т. д.). Это так же является причиной указания в разных источниках совершенно разных величин границ областей излучения. Всё это говорит о том, что использовать температуру для описания электромагнитного излучения надо с большой осторожностью и с точностью до порядка. Еще раз подчеркиваю, деление весьма условное!!!

Приведем примеры условного деления инфракрасной области (λ = 0,78 – 1000 мкм) на отдельные участки (информация взята только из технической литературы российских и зарубежных ученых). На приведенном рисунке видно насколько разнообразно это деление, поэтому не стоит привязываться ни к одной из них. Просто нужно знать, что спектр инфракрасного излучения можно условно разбить на несколько участков, от 2-х до 5-и. Область, которая находится ближе в видимому спектру обычно называют: ближняя, близкая, коротковолновая и т.п.. Область, которая находится ближе к микроволновым излучениям - дальняя, далекая, длинноволновая и т.п. Если верить Википедии, то обычная схема деления выглядит так: Ближняя область (Near-infrared, NIR), Коротковолновая область (Short-wavelength infrared, SWIR), Средневолновая область (Mid-wavelength infrared, MWIR), Длинноволновая область (Long-wavelength infrared, LWIR), Дальняя область (Far-infrared, FIR).


Свойства инфракрасных лучей

Инфракрасные лучи - это электромагнитное излучение, имеющее ту же природу, что и видимый свет, поэтому оно так де подчиняется законам оптики. Поэтому, чтобы лучше себе представить процесс теплового излучения, следует проводить аналогию со световым излучением, которое нам всем известно и доступно наблюдению. Однако не надо забывать, что оптические свойства веществ (поглощение, отражение, прозрачность, преломление и т.п.) в инфракрасной области спектра, значительно отличаются от оптических свойств в видимой части спектра. Характерной особенностью инфракрасного излучения является то, что в отличие от других основных видов передачи теплоты здесь нет необходимости в передающем промежуточном веществе. Воздух и тем более вакуум считается прозрачным для инфракрасного излучения, хотя с воздухом это не совсем так. При прохождении инфракрасного излучения через атмосферу (воздух), наблюдается некоторое ослабление теплового излучения. Это обусловлено тем, что сухой и чистый воздух практически прозрачен для тепловых лучей, однако при наличии в нем влаги в виде пара, молекул воды (Н 2 О) , углекислого газа (СО 2) , озона (О 3) и других твердых или жидких взвешенных частиц, которые отражают и поглощают инфракрасные лучи, он становится не совсем прозрачной средой и в результате этого поток инфракрасного излучения рассеивается по разным направлениям и ослабевает. Обычно рассеяние в инфракрасной области спектра меньше, чем в видимой. Однако, когда потери, вызванные рассеянием в видимой области спектра, велики, и в инфракрасной области они также значительны. Интенсивность рассеянного излучения изменяется обратно пропорционально четвертой степени длины волны. Оно существенно только в коротковолновой инфракрасной области и быстро уменьшается в более длинноволновой части спектра.

Молекулы азота и кислорода в воздухе не поглощают инфракрасное излучение, а ослабляют его лишь в результате рассеяния. Взвешенные частицы пыли так же приводят к рассеиванию инфракрасного излучения, причём величина рассеяния зависит от соотношения размеров частиц и длины волны инфракрасного излучения, чем больше частицы, тем больше рассеивание.

Пары воды, углекислый газ, озон и другие примеси, имеющиеся в атмосфере, селективно поглощают инфракрасное излучение. Например, пары воды, очень сильно поглощают инфракрасное излучение во всей инфракрасной области спектра , а углекислый газ поглощает инфракрасное излучение в средней инфракрасной области.

Что касается жидкостей, то они могут быть как прозрачными, так и не прозрачными для инфракрасного излучения. Например, слой воды толщиной в несколько сантиметров прозрачен для видимого излучения и непрозрачен для инфракрасного излучения с длиной волны более 1 мкм.

Твердые вещества (тела), в свою очередь, в большинстве случаев не прозрачны для теплового излучения , но бывают и исключения. Например, пластины кремния, непрозрачные в видимой области, прозрачны в инфракрасной области, а кварц, наоборот, прозрачен для светового излучения, но непрозрачен для тепловых лучей с длиной волны более 4 мкм. Именно по этой причине кварцевые стекла не применяются в инфракрасных обогревателях. Обычное стекло, в отличие от кварцевого, частично прозрачно для инфракрасных лучей, оно так же может поглощать значительную часть инфракрасного излучения в определенных интервалах спектра, но за то не пропускает ультрафиолетовое излучение. Каменная соль, так же, прозрачна для теплового излучения. Металлы, в своем большинстве, имеют отражательную способность для инфракрасного излучения значительно больше, чем для видимого света, которая возрастает с увеличением длины волны инфракрасного излучения. Например, коэффициент отражения алюминия, золота, серебра и меди при длине волны около 10 мкм достигает 98% , что значительно выше, чем для видимого спектра, это свойство широко используется в конструкции инфракрасных обогревателей.

Достаточно привести здесь в качестве примера остекленные рамы парников: стекло практически пропускает большую часть солнечного излучения, а с другой стороны, разогретая земля излучает волны большой длины (порядка 10 мкм ), в отношении которых стекло ведет себя как непрозрачное тело. Благодаря этому внутри парников длительное время поддерживается температура, значительно более высокая, чем температура наружного воздуха, даже после того, как солнечное излучение прекращается.



Важную роль в жизни человека играет лучистый теплообмен. Человек отдает окружающей среде теплоту, вырабатываемую в ходе физиологического процесса, главным образом путем лучистого теплообмена и конвекции. При лучистом (инфракрасном) отоплении лучистая составляющая теплообмена тела человека сокращается из-за более высокой температуры, возникающей как на поверхности отопительного прибора, так и на поверхности некоторых внутренних ограждающих конструкций, поэтому при обеспечении одного и того же тепло ощущения конвективные теплопотери могут быть больше, т.е. температура воздуха в помещении может быть меньше. Таким образом, лучистый теплообмен играет решающую роль в формировании ощущения теплового комфорта у человека.

При нахождении человека в зоне действия инфракрасного обогревателя, ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи.

При инфракрасном длинноволновом излучении проникновение лучей значительно меньше по сравнению с коротковолновым излучением . Поглощающая способность влаги, содержащейся в тканях кожи, очень велика, и кожа поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты.

Инфракрасные лучи оказывают как местное, так и общее воздействие. Коротковолновое инфракрасное излучение , в отличии от длинноволнового инфракрасного излучения, может вызвать покраснение кожи в месте облучения, которое рефлекторно распространяется на 2-3 см. вокруг облучаемой области. Причина этого в том, что капиллярные сосуды расширяются, кровообращение усиливается. Вскоре на месте облучения может появиться волдырь, который позднее превращается в струп. Так же при попадании коротковолновых инфракрасных лучей на органы зрения может возникнуть катаракта.

Перечисленные выше, возможные последствия от воздействия коротковолнового ИК обогревателя , не следует путать с воздействием длинноволнового ИК обогревателя . Как уже было сказано, длинноволновые инфракрасные лучи поглощаются в самой верхней части слоя кожи и вызывает только простое тепловое воздействие.

Использование лучистого отопления не должно подвергать человека опасности и создавать дискомфортный микроклимат в помещении.

При лучистом отоплении можно обеспечить комфортные условия при более низкой температуре. При применении лучистого отопления воздух в помещении чище, поскольку меньше скорость воздушных потоков, благодаря чему уменьшается загрязнение пылью. Так же при данном отоплении не происходит разложение пыли, так как температура излучающей пластины длинноволнового обогревателя никогда не достигает температуры, необходимой для разложения пыли.


Чем холоднее излучатель тепла, тем он безвреднее для организма человека, тем дольше может находиться человек в зоне действия обогревателя.


Длительное нахождение человека вблизи ВЫСОКОТЕМПЕРАТУРНОГО источника тепла (более 300°С) вредно для здоровья человека.


Влияние на здоровье человека инфракрасного излучения.

Организм человека, как излучает инфракрасные лучи , так и поглощает их. ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи. Длинноволновое излучение проникает в организм человека значительно меньше по сравнению с коротковолновым излучением . Влага, находящаяся в тканях кожи, поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты. Коротковолновое ИК излучение наиболее глубоко проникает в организм, вызывая его максимальный прогрев. В результате этого воздействия повышается потенциальная энергия клеток организма, и из них будет уходить несвязанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови. Однако длительное воздействие коротковолнового инфракрасного излучения на организм человека - нежелательно. Именно на этом свойстве основан эффект теплового лечения , широко используемого в физиотерапевтических кабинетах наших и зарубежных клиник и замете, длительность процедур - ограничена. Однако данные ограничения не распространяются на длинноволновые инфракрасные обогреватели. Важная характеристика инфракрасного излучения – длина волны (частота) излучения. Современные исследования в области биотехнологий показали, что именно длинноволновое инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также биогенетическими лучами или лучами жизни. Наше тело само излучает длинные инфракрасные волны , но оно само нуждается также и в постоянной подпитке длинноволновым теплом . Если это излучение начинает уменьшаться или нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия. Дальнее инфракрасное излучение нормализует процесс обмена и устраняет причину болезни, а не только её симптомы.

С таким отоплением не будет болеть голова от духоты, вызываемой перегретым воздухом под потолком, как при работе конвективного отопления , - когда постоянно хочется открыть форточку и впустить свежий воздух (при этом выпуская нагретый).

При воздействии ИК-излучения интенсивностью 70-100 Вт/м2 в организме повышается активность биохимических процессов, что ведет к улучшению общего состояния человека. Однако существуют нормативы и их стоит придерживаться. Есть нормативы по безопасному отоплению бытовых и промышленных помещений, по длительности лечебных и косметологических процедур, по работе в ГОРЯЧИХ цехах и т.п. Не стоит об этом забывать. При правильном использовании инфракрасных обогревателей - отрицательного воздействия на организм ПОЛНОСТЬЮ ОТСУТСТВУЕТ.

Инфракрасное излучение, инфракрасные лучи, свойства инфракрасных лучей, спектр излучения инфракрасных обогревателей

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ, ИНФРАКРАСНЫЕ ЛУЧИ, СВОЙСТВА ИНФРАКРАСНЫХ ЛУЧЕЙ, СПЕКТР ИЗЛУЧЕНИЯ ИНФРАКРАСНЫХ ОБОГРЕВАТЕЛЕЙ Калининград

ОБОГРЕВАТЕЛИ СВОЙСТВА ИЗЛУЧЕНИЕ СПЕКТР ОБОГРЕВАТЕЛЕЙ ДЛИНА ВОЛНЫ ДЛИННОВОЛНОВЫЕ СРЕДНЕВОЛНОВЫЕ КОРОТКОВОЛНОВЫЕ СВЕТЛЫЕ ТЕМНЫЕ СЕРЫЕ ВРЕД ЗДОРОВЬЕ ВЛИЯНИЕ НА ЧЕЛОВЕКА Калининград

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н 2 О, О 2 , О 3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н 2 О наблюдаются во всей ИК-области спектра, а полосы СО 2 - в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров - 1,15 и 3,39 мкм, СО 2 -лазеров - 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту - для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.

Инфракрасное излучение - это электромагнитное излучение, находящееся на границе с красным спектром видимого света. Человеческий глаз не способен видеть этот спектр, однако мы его ощущаем кожей, как тепло. При воздействии инфракрасных лучей, предметы нагреваются. Чем короче длина волны инфракрасного излучения, тем сильнее будет тепловой эффект.

Согласно международной организации стандартизации (ISO), инфракрасное излучение делится на три диапазона: ближний, средний и дальний. В медицине, в импульсной инфракрасной светодиодной терапии (LEDT), применяется только ближний инфракрасный диапазон, поскольку он не рассеивается на поверхности кожи и проникает на подкожные структуры.


Спектр ближнего инфракрасного излучения ограничен от 740 до 1400 нм, но с увеличением длины волны - снижается способность лучей проникать в ткани, за счет поглощения фотонов водой. В аппаратах “РИКТА” используются инфракрасные диоды с длиной волны в диапазоне 860-960 нм и средней мощностью 60 мВт (+/- 30).

Излучение инфракрасных лучей не такое глубокое, как лазерное, однако у него более широкий спектр воздействия. Было доказано, что фототерапия ускоряет заживление ран, уменьшает воспаление и снимает болевой синдром, воздействуя на подкожные ткани и способствуя пролиферации и адгезии клеток в тканях .

LEDT интенсивно способствует прогреванию ткани поверхностных структур, улучшает микроциркуляцию, стимулирует регенерацию клеток, способствует уменьшению воспалительного процесса и восстановлению эпителия .


ЭФФЕКТИВНОСТЬ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ В ЛЕЧЕНИИ ЧЕЛОВЕКА

LEDT используется, как дополнение к низкоинтенсивной лазерной терапии аппаратов “РИКТА” и обладает лечебным и профилактическим эффектами.

LEDT используется как дополнение к низкоинтенсивной лазерной терапии аппаратов “РИКТА” и обладает лечебным и профилактическим эффектами.

Воздействие аппарата инфракрасного излучения способствует ускорению метаболических процессов в клетках, активирует регенеративные механизмы и улучшает кровоснабжение . У инфракрасного излучения комплексное действие, оно оказывает следующие эффекты на организм:

    увеличение диаметра сосудов и улучшение кровообращения;

    активация клеточного иммунитета;

    снятие отечности тканей и воспаления;

    купирование болевых синдромов;

    улучшение метаболизма;

    снятие эмоционального напряжения;

    восстановление водно-солевого баланса;

    нормализация гормонального фона.

Воздействуя на кожу, инфракрасные лучи раздражают рецепторы, передавая сигнал в мозг. Центральная нервная система рефлекторно отвечает, стимулируя общий метаболизм и повышая общий иммунитет.

Гормональный ответ способствует расширению просвета сосудов микроциркуляторного роста, улучшая кровоток. Это приводит к нормализации артериального давления, лучшему транспорту кислорода в органы и ткани .

БЕЗОПАСНОСТЬ

Несмотря на пользу, оказываемую импульсной инфракрасной светодиодной терапией, воздействие инфракрасным излучением должно быть дозированным. Бесконтрольное облучение может привести к ожогам, покраснениям кожи, перегреву тканей.

Количество и длительность процедур, частоту и область инфракрасного излучения, а также другие особенности лечения должен назначать специалист.

ПРИМЕНЕНИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

LEDT-терапия показала высокую эффективность при лечении разных заболеваний: пневмонии, гриппа, ангины, бронхиальной астмы, васкулита, пролежней, варикозного расширения вен, заболеваний сердца, обморожений и ожогов, некоторых форм дерматитов, заболеваний периферической нервной системы и злокачественных новообразований кожи .

Инфракрасное излучение, наряду с электромагнитным и лазерным, оказывает общеукрепляющее действие и помогает при лечении и профилактики многих заболеваний. Аппарат “РИКТА” сочетает в себе излучение многокомпонентного типа и позволяет добиться максимального эффекта в короткий срок. Купить прибор инфракрасного излучения можно в .

В невидимой области электромагнитного спектра, которая начинается за видимым красным светом и заканчивается перед микроволновым излучением между частотами 10 12 и 5∙10 14 Гц (или находится в диапазоне длин волн 1-750 нм). Название происходит от латинского слова infra и означает «ниже красного».

Применение инфракрасных лучей разнообразно. Они используются для визуализации объектов в темноте или в дыму, отопления саун и подогрева крыльев воздушных судов для защиты от обледенения, в ближней связи и при проведении спектроскопического анализа органических соединений.

Открытие

Инфракрасные лучи были обнаружены в 1800 г. британским музыкантом и астрономом-любителем немецкого происхождения Уильямом Гершелем. Он с помощью призмы разделил солнечный свет на составляющие его компоненты и за красной частью спектра с помощью термометра зарегистрировал увеличение температуры.

ИК-излучение и тепло

Инфракрасное излучение часто называют тепловым. Следует, однако, отметить, что оно является лишь его следствием. Тепло - это мера поступательной энергии (энергии движения) атомов и молекул вещества. «Температурные» датчики фактически измеряют не тепло, а только различия в ИК-излучении различных объектов.

Многие учителя физики инфракрасным лучам традиционно приписывают всю тепловую радиацию Солнца. Но это не совсем так. С видимым солнечным светом поступает 50% всего тепла, и электромагнитные волны любой частоты при достаточной интенсивности могут вызвать нагрев. Однако справедливо будет сказать, что при комнатной температуре объекты выделяют тепло в основном в полосе среднего инфракрасного диапазона.

ИК-излучение поглощается и испускается вращениями и вибрациями химически связанных атомов или их групп и, следовательно, многими видами материалов. Например, прозрачное для видимого света оконное стекло ИК-радиацию поглощает. Инфракрасные лучи в значительной степени абсорбируются водой и атмосферой. Хотя они и невидимы для глаз, их можно ощутить кожей.

Земля как источник инфракрасного излучения

Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.

Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.

Области ИК-диапазона

ИК-диапазон часто разделяется на более узкие участки спектра. Немецкий институт стандартов DIN определил такие области длин волн инфракрасных лучей:

  • ближний (0,75-1,4 мкм), обычно используемый в волоконно-оптической связи;
  • коротковолновой (1,4-3 мкм), начиная с которого значительно возрастает поглощение ИК-излучения водой;
  • средневолновой, также называемый промежуточным (3-8 мкм);
  • длинноволновый (8-15 мкм);
  • дальний (15-1000 мкм).

Однако эта схема классификации не используется повсеместно. Например, в некоторых исследованиях указываются следующие диапазоны: ближний (0,75-5 мкм), средний (5-30 мкм) и длинный (30-1000 мкм). Длины волн, используемые в телекоммуникации, подразделяются на отдельные полосы из-за ограничений детекторов, усилителей и источников.

Общая система обозначений оправдана реакциями человека на инфракрасные лучи. Ближняя ИК-область наиболее близка к длине волны, видимой человеческим глазом. Среднее и дальнее ИК-излучение постепенно удаляются от видимой части спектра. Другие определения следуют различным физическим механизмам (таким как пики эмиссии и поглощение воды), а самые новые основаны на чувствительности используемых детекторов. Например, обычные кремниевые сенсоры чувствительны в области около 1050 нм, а арсенид индий-галлия - в диапазоне от 950 нм до 1700 и 2200 нм.

Четкая граница между инфракрасным и видимым светом не определена. Глаз человека значительно менее чувствителен к красному свету, превышающему длину волны 700 нм, однако интенсивное свечение (лазера) можно видеть примерно до 780 нм. Начало ИК-диапазона определяется в разных стандартах по-разному - где-то между этими значениями. Обычно это 750 нм. Поэтому видимые инфракрасные лучи возможны в диапазоне 750-780 нм.

Обозначения в системах связи

Оптическая связь в ближней ИК-области технически подразделяется на ряд полос частот. Это связано с различными источниками света, поглощающими и передающими материалами (волокнами) и детекторами. К ним относятся:

  • О-диапазон 1,260-1,360 нм.
  • Е-диапазон 1,360-1,460 нм.
  • S-диапазон 1,460-1,530 нм.
  • C-диапазон 1,530-1,565 нм.
  • L-диапазон 1,565-1,625 нм.
  • U-диапазон 1,625-1,675 нм.

Термография

Термография, или тепловидение - это тип инфракрасного изображения объектов. Поскольку все тела излучают в ИК-диапазоне, а интенсивность радиации увеличивается с температурой, для ее обнаружения и получения снимков можно использовать специализированные камеры с ИК-датчиками. В случае очень горячих объектов в ближней инфракрасной или видимой области, этот метод называется пирометрией.

Термография не зависит от освещения видимым светом. Следовательно, можно «видеть» окружающую среду даже в темноте. В частности, теплые предметы, в том числе люди и теплокровные животные, хорошо выделяются на более холодном фоне. Инфракрасная фотография ландшафта улучшает отображение объектов в зависимости от их теплоотдачи: голубое небо и вода кажутся почти черными, а зеленая листва и кожа ярко проявляются.

Исторически термография широко использовалась военными и службами безопасности. Кроме того, она находит множество других применений. Например, пожарные используют ее, чтобы видеть сквозь дым, находить людей и локализовать горячие точки во время пожара. Термография может выявить патологический рост тканей и дефекты в электронных системах и схемах из-за их повышенного выделения тепла. Электрики, обслуживающие линии электропередач, могут обнаружить перегревающиеся соединения и детали, что сигнализирует о нарушении их работы, и устранить потенциальную опасность. При нарушении теплоизоляции специалисты-строители могут увидеть утечки тепла и повысить эффективность систем охлаждения или обогрева. В некоторых автомобилях высокого класса тепловизоры устанавливаются для помощи водителю. С помощью термографических изображений можно контролировать некоторые физиологические реакции у людей и теплокровных животных.

Внешний вид и способ работы современной термографической камеры не отличаются от таковых у обычной видеокамеры. Возможность видеть в инфракрасном спектре является настолько полезной функцией, что возможность записи изображений часто является опциональной, и модуль записи не всегда доступен.

Другие изображения

В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.

Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.

Светодиоды и лазеры

Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.

ИК-приемники

К приборам обнаружения ИК-излучения относятся термочувствительные устройства, такие как термопарные детекторы, болометры (некоторые из них охлаждаются до температур, близких к абсолютному нулю, чтобы снизить помехи от самого детектора), фотогальванические элементы и фотопроводники. Последние изготавливаются из полупроводниковых материалов (например, кремния и сульфида свинца), электрическая проводимость которых увеличивается при воздействии инфракрасных лучей.

Обогрев

Инфракрасное излучение используется для нагрева - например, для отопления саун и удаления льда с крыльев самолетов. Кроме того, оно все чаще применяется для плавления асфальта во время укладки новых дорог или ремонта поврежденных участков. ИК-излучение может использоваться при приготовлении и подогреве пищи.

Связь

ИК-длины волн применяются для передачи данных на небольшие расстояния, например, между компьютерной периферией и персональными цифровыми помощниками. Эти устройства обычно соответствуют стандартам IrDA.

ИК-связь обычно используется внутри помещений в районах с высокой плотностью населения. Это наиболее распространенный способ дистанционного управления устройствами. Свойства инфракрасных лучей не позволяют им проникать сквозь стены, и поэтому они не взаимодействуют с техникой в соседних помещениях. Кроме того, ИК-лазеры используются в качестве источников света в оптоволоконных системах связи.

Спектроскопия

Инфракрасная радиационная спектроскопия - это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.

Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.

Польза и вред инфракрасных лучей

Длинноволновое ИК-излучение применяется в медицине с целью:

  • нормализации артериального давления путем стимуляции кровообращения;
  • очищения организма от солей тяжелых металлов и токсинов;
  • улучшения кровообращения мозга и памяти;
  • нормализации гормонального фона;
  • поддержания водно-солевого баланса;
  • ограничения распространения грибков и микробов;
  • обезболивания;
  • снятия воспаления;
  • укрепления иммунитета.

Вместе с тем ИК-излучение может нанести вред при острых гнойных заболеваниях, кровотечениях, острых воспалениях, болезнях крови, злокачественных опухолях. Неконтролируемое продолжительное воздействие ведет к покраснению кожи, ожогам, дерматиту, тепловому удару. Коротковолновые ИК-лучи опасны для глаз - возможно развитие светобоязни, катаракты, нарушений зрения. Поэтому для отопления должны применяться исключительно источники длинноволнового излучения.

Инфракрасное излучение невидимо для человеческого глаза, однако, его испускают все жидкие и твердые вещества. Оно обеспечивает протекание многих процессов на Земле. Применяется в различных областях нашей деятельности.

Все свойства инфракрасного излучения на организм исследованы фототерапевтами. Влияние зависит от длины волны и продолжительности воздействия. Они незаменимы для нормальной жизни.

ИК диапазон находится в промежутке от конца красного видимого спектра до фиолетового (ультрафиолет). Этот интервал разбит на области: длинную, среднюю и короткую. В ближнем свете лучи более опасны. А вот длинноволновые благотворно влияют на организм.

Польза от инфракрасного излучения:

  • использование в медицине для лечения различных заболеваний;
  • научные исследования – помощь в открытиях;
  • благотворно влияет на рост растений;
  • применение в пищевой промышленности для ускорения биохимических превращений;
  • стерилизация продуктов питания;
  • обеспечивает работу техники – радио, телефонов, и других;
  • изготовление различных аппаратов и приборов, в основе действия которых лежит ИК;
  • использование в военных целях для безопасности населения.

Отрицательные аспекты коротковолнового ИК обусловлены температурой нагрева. Чем она выше, тем сильней интенсивность излучения.

Вредные свойства короткого ИК:

  • при воздействии на глаза – катаракта;
  • при попадании на кожу – ожоги, волдыри;
  • при влиянии на мозг – тошнота, головокружение, учащение пульса;
  • при использовании нагревателей с ИК нельзя находиться в непосредственной близости.

Источники излучения

Солнце – главный естественный генератор ИК. Примерно 50 % его излучения в инфракрасном спектре. Благодаря им зародилась жизнь. Солнечная энергия направляется к предметам с более низкой температурой и нагревает их.

Земля поглощает её, и бо́льшую часть возвращает в атмосферу. У всех объектов разные излучающие свойства, которые могут иметь зависимость от нескольких тел.

К искусственным производным относится множество предметов, оснащенных светодиодами. Это лампа накаливания, вольфрамовая нить, обогреватели, некоторые лазеры. Практически все что нас окружает является одновременно источником и поглотителем ИК. Любое нагретое тело излучает невидимый свет.

Применение


Инфракрасные лучи используют в медицине, быту, промышленности, астрономии. Они охватывают много сфер в человеческой жизни. Куда бы он ни пошел, где бы не находился, всюду испытывает ИК воздействие.

Использование в медицине


С давних времен люди заметили целебную силу тепла для лечения болезней. Многие расстройства берутся из-за неблагоприятных окружающих условий. На протяжении жизни организм накапливает вредные вещества.

Инфракрасное излучение давно применяется в медицине. Наиболее полезными качествами обладают длинноволновое ИК. Исследования доказали, что такая терапия стимулирует организм выводить токсины, алкоголь, никотин, свинец, ртуть.

Нормализует процесс обмена веществ, укрепляется иммунитет, многие инфекции проходят, причем исчезают не только симптомы, но и сама болезнь. Здоровье явно становится крепче: снижается давление, появляется хороший сон, мышцы расслабляются, сосуды расширяются, ускоряется кровоток, настроение улучшается, психическое напряжение уходит.

Методы лечения могут быть сосредоточены непосредственно на больном участке или оказать влияние на весь организм.

Особенностью местной физиотерапии является направленное действие ИК на больные части тела. Общие процедуры рассчитаны на весь организм. Улучшение наступает уже после нескольких сеансов.

Пример основных заболеваний, при которых показана ИК терапия:

  • опорно-двигательный аппарат – переломы, артрит, воспаление суставов;
  • дыхательная система – астма, бронхит, пневмония;
  • нервная система – невралгия, беспокойный сон, депрессия;
  • мочевыделительный аппарат – почечная недостаточность, цистит, простатит;
  • кожный покров – ожоги, язвы, рубцы, воспалительные процессы, псориаз;
  • косметология – антицеллюлитный эффект;
  • стоматология – удаление нервов, установка пломбы;
  • сахарный диабет;
  • устранение радиоактивного облучения.

Это список не отражает все аспекты в медицине, где применяются инфракрасные лучи.

Физиопроцедуры имеют противопоказания: беременность, заболевания крови, индивидуальная непереносимость, патологии во время обострения, туберкулез, новообразования, гнойные процессы, склонность к кровотечениям.

Инфракрасный обогреватель


Все популярнее становятся ИК обогреватели. Это объясняется существенными преимуществами с экономического и социально-бытового подхода.

В промышленности и сельском хозяйстве давно установили, что электромагнитные устройства не рассеивают тепло, а нагревают нужный объект фокусируя инфракрасные излучения в виде волны непосредственно на предмет. Так, в большом цехе отапливается рабочее место, а на складе пути следования человека, а не все помещение.

Центральное теплоснабжение осуществляется при помощи горячей воды в батареях. Распределение температуры происходит неравномерно, нагретый воздух поднимается к потолку, а в районе паркета он явно холоднее. В случае с инфракрасным обогревателем проблемы нерационально используемого тепла возможно избежать.

Установки в комплексе с естественной вентиляцией снижают влажность воздуха до нормального, например, на свинофермах и коровниках датчики фиксируют 70-75% и меньше. При использовании такого излучателя увеличивается поголовье животных.

Инфракрасная спектроскопия


Раздел в физике отвечающий за влияние ИК на тела называется инфракрасной спектроскопией. При помощи него решаются задачи количественного и качественного анализа смесей веществ, исследование межмолекулярных взаимодействий, изучение кинетики и характеристик интермедиатов химических реакций.

Этом метод измеряет колебания молекул при помощи спектрометра. Имеет большую табличную базу данных, которая позволяет идентифицировать тысячи веществ основываясь на их атомном отпечатке.

Дистанционное управление


Используется для контролирования за устройствами на расстоянии. Инфракрасные диоды применяют в основном в домашней технике. Например, пульт от телевизора, некоторые смартфоны имеют ИК порт.

Эти лучи не мешают, т.к. невидимы для человеческих глаз.

Термография


Тепловое изображение в инфракрасных лучах, используется в диагностических целях, также в полиграфии, в ветеринарии и других сферах.

При различных заболеваниях температура тела меняется. Кровеносная система усиливает интенсивность в области нарушений, что и отражается на мониторе приборов.

Холодные оттенки – темно-синие, повышение тепла заметно по изменению цвета сначала на зеленый, затем желтый, красный и белый.

Свойства ИК лучей


ИК лучи имеют такую же природу, как и видимый свет, но находятся в другом диапазоне. В связи с этим они подчиняются законам оптики и наделены коэффициентами излучения, отражения, пропускной способности.

Отличительные характеристики:

  • специфической чертой является отсутствие необходимости промежуточного звена при передаче тепла;
  • возможность проходить через некоторые непрозрачные тела;
  • нагревает вещество, поглощаясь им;
  • невидим;
  • оказывает химическое действие на фотопластинки;
  • вызывает внутренний фотоэффект у германия;
  • способен к волновойоптике (интерференции и дифракции);
  • фиксируется фотографическим методам.

Инфракрасное излучение в жизни


Человек излучает и поглощает ИК лучи. Они оказывают местное и общее воздействие. А какие будут последствия – польза или вред, зависит от их частоты.

От людей отходят длинные инфракрасные волны, и желательно получить их же обратно. Физиотерапевтическое лечение базируется на них. Ведь они запускают механизм регенерации и оздоровления органов.

Короткие волны имеют другой принцип действия. Они могут вызывать нагрев внутренних органов.

Также длительное влияние ультрафиолетовых лучей приводит к таким последствиям, как ожог или даже онкология. Медицинские специалисты не рекомендуют пребывать на солнце в дневное время, особенно если с вами ребенок.